/* $NoKeywords:$ */ /** * @file * * AMD Family_15 P-State power check * * Performs the "Processor-Systemboard Power Delivery Compatibility Check" as * described in the BKDG. * * @xrefitem bom "File Content Label" "Release Content" * @e project: AGESA * @e sub-project: CPU/Family/0x15 * @e \$Revision: 63425 $ @e \$Date: 2011-12-22 11:24:10 -0600 (Thu, 22 Dec 2011) $ * */ /* ****************************************************************************** * * Copyright (c) 2008 - 2012, Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Advanced Micro Devices, Inc. nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ****************************************************************************** */ /*---------------------------------------------------------------------------------------- * M O D U L E S U S E D *---------------------------------------------------------------------------------------- */ #include "AGESA.h" #include "amdlib.h" #include "cpuF15PowerMgmt.h" #include "cpuRegisters.h" #include "cpuApicUtilities.h" #include "cpuFamilyTranslation.h" #include "cpuF15PowerCheck.h" #include "cpuServices.h" #include "GeneralServices.h" #include "OptionMultiSocket.h" #include "Filecode.h" CODE_GROUP (G3_DXE) RDATA_GROUP (G3_DXE) #define FILECODE PROC_CPU_FAMILY_0X15_CPUF15POWERCHECK_FILECODE /*---------------------------------------------------------------------------------------- * D E F I N I T I O N S A N D M A C R O S *---------------------------------------------------------------------------------------- */ /*---------------------------------------------------------------------------------------- * T Y P E D E F S A N D S T R U C T U R E S *---------------------------------------------------------------------------------------- */ /*---------------------------------------------------------------------------------------- * P R O T O T Y P E S O F L O C A L F U N C T I O N S *---------------------------------------------------------------------------------------- */ VOID STATIC F15PmPwrCheckCore ( IN VOID *ErrorData, IN AMD_CONFIG_PARAMS *StdHeader ); VOID STATIC F15PmPwrChkCopyPstate ( IN UINT8 Dest, IN UINT8 Src, IN AMD_CONFIG_PARAMS *StdHeader ); /*---------------------------------------------------------------------------------------- * E X P O R T E D F U N C T I O N S *---------------------------------------------------------------------------------------- */ extern OPTION_MULTISOCKET_CONFIGURATION OptionMultiSocketConfiguration; /*---------------------------------------------------------------------------------------*/ /** * Family 15h core 0 entry point for performing the family 15h Processor- * Systemboard Power Delivery Check. * * The steps are as follows: * 1. Starting with P0, loop through all P-states until a passing state is * found. A passing state is one in which the current required by the * CPU is less than the maximum amount of current that the system can * provide to the CPU. If P0 is under the limit, no further action is * necessary. * 2. If at least one P-State is under the limit & at least one P-State is * over the limit, the BIOS must: * a. If the processor's current P-State is disabled by the power check, * then the BIOS must request a transition to an enabled P-state * using MSRC001_0062[PstateCmd] and wait for MSRC001_0063[CurPstate] * to reflect the new value. * b. Copy the contents of the enabled P-state MSRs to the highest * performance P-state locations. * c. Request a P-state transition to the P-state MSR containing the * COF/VID values currently applied. * d. If a subset of boosted P-states are disabled, then copy the contents * of the highest performance boosted P-state still enabled to the * boosted P-states that have been disabled. * e. If all boosted P-states are disabled, then program D18F4x15C[BoostSrc] * to zero. * f. Adjust the following P-state parameters affected by the P-state * MSR copy by subtracting the number of P-states that are disabled * by the power check. * 1. F3x64[HtcPstateLimit] * 2. F3x68[SwPstateLimit] * 3. F3xDC[PstateMaxVal] * 3. If all P-States are over the limit, the BIOS must: * a. If the processor's current P-State is !=F3xDC[PstateMaxVal], then * write F3xDC[PstateMaxVal] to MSRC001_0062[PstateCmd] and wait for * MSRC001_0063[CurPstate] to reflect the new value. * b. If MSRC001_0061[PstateMaxVal]!=000b, copy the contents of the P-state * MSR pointed to by F3xDC[PstateMaxVal] to the software P0 MSR. * Write 000b to MSRC001_0062[PstateCmd] and wait for MSRC001_0063 * [CurPstate] to reflect the new value. * c. Adjust the following P-state parameters to zero: * 1. F3x64[HtcPstateLimit] * 2. F3x68[SwPstateLimit] * 3. F3xDC[PstateMaxVal] * d. Program D18F4x15C[BoostSrc] to zero. * * @param[in] FamilySpecificServices The current Family Specific Services. * @param[in] CpuEarlyParams Service parameters * @param[in] StdHeader Config handle for library and services. * */ VOID F15PmPwrCheck ( IN CPU_SPECIFIC_SERVICES *FamilySpecificServices, IN AMD_CPU_EARLY_PARAMS *CpuEarlyParams, IN AMD_CONFIG_PARAMS *StdHeader ) { UINT8 DisPsNum; UINT8 PsMaxVal; UINT8 Pstate; UINT32 ProcIddMax; UINT32 LocalPciRegister; UINT32 Socket; UINT32 Module; UINT32 Core; UINT32 AndMask; UINT32 OrMask; UINT32 PstateLimit; PCI_ADDR PciAddress; UINT64 LocalMsrRegister; AP_TASK TaskPtr; AGESA_STATUS IgnoredSts; PWRCHK_ERROR_DATA ErrorData; UINT32 NumModules; UINT32 HighCore; UINT32 LowCore; UINT32 ModuleIndex; // get the socket number IdentifyCore (StdHeader, &Socket, &Module, &Core, &IgnoredSts); ErrorData.SocketNumber = (UINT8) Socket; ASSERT (Core == 0); // get the Max P-state value for (PsMaxVal = NM_PS_REG - 1; PsMaxVal != 0; --PsMaxVal) { LibAmdMsrRead (PS_REG_BASE + PsMaxVal, &LocalMsrRegister, StdHeader); if (((F15_PSTATE_MSR *) &LocalMsrRegister)->PsEnable == 1) { break; } } ErrorData.HwPstateNumber = (UINT8) (PsMaxVal + 1); // Starting with P0, loop through all P-states until a passing state is // found. A passing state is one in which the current required by the // CPU is less than the maximum amount of current that the system can // provide to the CPU. If P0 is under the limit, no further action is // necessary. DisPsNum = 0; for (Pstate = 0; Pstate < ErrorData.HwPstateNumber; Pstate++) { if (FamilySpecificServices->GetProcIddMax (FamilySpecificServices, Pstate, &ProcIddMax, StdHeader)) { if (ProcIddMax > CpuEarlyParams->PlatformConfig.VrmProperties[CoreVrm].CurrentLimit) { // Add to event log the Pstate that exceeded the current limit PutEventLog (AGESA_WARNING, CPU_EVENT_PM_PSTATE_OVERCURRENT, Socket, Pstate, 0, 0, StdHeader); DisPsNum++; } else { break; } } } ErrorData.AllowablePstateNumber = ((PsMaxVal + 1) - DisPsNum); if (ErrorData.AllowablePstateNumber == 0) { PutEventLog (AGESA_FATAL, CPU_EVENT_PM_ALL_PSTATE_OVERCURRENT, Socket, 0, 0, 0, StdHeader); } if (DisPsNum != 0) { GetPciAddress (StdHeader, Socket, Module, &PciAddress, &IgnoredSts); PciAddress.Address.Function = FUNC_4; PciAddress.Address.Register = CPB_CTRL_REG; LibAmdPciRead (AccessWidth32, PciAddress, &LocalPciRegister, StdHeader); // F4x15C ErrorData.NumberOfBoostStates = (UINT8) ((F15_CPB_CTRL_REGISTER *) &LocalPciRegister)->NumBoostStates; if (DisPsNum >= ErrorData.NumberOfBoostStates) { // If all boosted P-states are disabled, then program D18F4x15C[BoostSrc] to zero. AndMask = 0xFFFFFFFF; ((F15_CPB_CTRL_REGISTER *) &AndMask)->BoostSrc = 0; OrMask = 0x00000000; OptionMultiSocketConfiguration.ModifyCurrSocketPci (&PciAddress, AndMask, OrMask, StdHeader); // F4x15C ErrorData.NumberOfSwPstatesDisabled = DisPsNum - ErrorData.NumberOfBoostStates; } else { ErrorData.NumberOfSwPstatesDisabled = 0; } NumModules = GetPlatformNumberOfModules (); // Only execute this loop if this is an MCM. if (NumModules > 1) { // Since the P-State MSRs are shared across a // node, we only need to set one core in the node for the modified number of supported p-states // to be reported across all of the cores in the module. TaskPtr.FuncAddress.PfApTaskI = F15PmPwrCheckCore; TaskPtr.DataTransfer.DataSizeInDwords = SIZE_IN_DWORDS (PWRCHK_ERROR_DATA); TaskPtr.DataTransfer.DataPtr = &ErrorData; TaskPtr.DataTransfer.DataTransferFlags = 0; TaskPtr.ExeFlags = WAIT_FOR_CORE; for (ModuleIndex = 0; ModuleIndex < NumModules; ModuleIndex++) { // Execute the P-State reduction code on the module's primary core only. // Skip this code for the BSC's module. if (ModuleIndex != Module) { if (GetGivenModuleCoreRange (Socket, ModuleIndex, &LowCore, &HighCore, StdHeader)) { ApUtilRunCodeOnSocketCore ((UINT8)Socket, (UINT8)LowCore, &TaskPtr, StdHeader); } } } } // Path for SCM and the BSC F15PmPwrCheckCore (&ErrorData, StdHeader); // Final Step // F3x64[HtPstatelimit] -= disPsNum // F3x68[SwPstateLimit] -= disPsNum // F3xDC[PstateMaxVal] -= disPsNum PciAddress.Address.Function = FUNC_3; PciAddress.Address.Register = HTC_REG; AndMask = 0xFFFFFFFF; ((HTC_REGISTER *) &AndMask)->HtcPstateLimit = 0; OrMask = 0x00000000; LibAmdPciRead (AccessWidth32, PciAddress, &LocalPciRegister, StdHeader); // F3x64 PstateLimit = ((HTC_REGISTER *) &LocalPciRegister)->HtcPstateLimit; if (PstateLimit > ErrorData.NumberOfSwPstatesDisabled) { PstateLimit -= ErrorData.NumberOfSwPstatesDisabled; ((HTC_REGISTER *) &OrMask)->HtcPstateLimit = PstateLimit; } OptionMultiSocketConfiguration.ModifyCurrSocketPci (&PciAddress, AndMask, OrMask, StdHeader); // F3x64 PciAddress.Address.Register = SW_PS_LIMIT_REG; AndMask = 0xFFFFFFFF; ((SW_PS_LIMIT_REGISTER *) &AndMask)->SwPstateLimit = 0; OrMask = 0x00000000; LibAmdPciRead (AccessWidth32, PciAddress, &LocalPciRegister, StdHeader); // F3x68 PstateLimit = ((SW_PS_LIMIT_REGISTER *) &LocalPciRegister)->SwPstateLimit; if (PstateLimit > ErrorData.NumberOfSwPstatesDisabled) { PstateLimit -= ErrorData.NumberOfSwPstatesDisabled; ((SW_PS_LIMIT_REGISTER *) &OrMask)->SwPstateLimit = PstateLimit; } OptionMultiSocketConfiguration.ModifyCurrSocketPci (&PciAddress, AndMask, OrMask, StdHeader); // F3x68 PciAddress.Address.Register = CPTC2_REG; AndMask = 0xFFFFFFFF; ((CLK_PWR_TIMING_CTRL2_REGISTER *) &AndMask)->PstateMaxVal = 0; OrMask = 0x00000000; LibAmdPciRead (AccessWidth32, PciAddress, &LocalPciRegister, StdHeader); // F3xDC PstateLimit = ((CLK_PWR_TIMING_CTRL2_REGISTER *) &LocalPciRegister)->PstateMaxVal; if (PstateLimit > ErrorData.NumberOfSwPstatesDisabled) { PstateLimit -= ErrorData.NumberOfSwPstatesDisabled; ((CLK_PWR_TIMING_CTRL2_REGISTER *) &OrMask)->PstateMaxVal = PstateLimit; } OptionMultiSocketConfiguration.ModifyCurrSocketPci (&PciAddress, AndMask, OrMask, StdHeader); // F3xDC } } /*---------------------------------------------------------------------------------------*/ /** * Core-level error handler called if any p-states were determined to be out * of range for the mother board. * * This function implements steps 2a-c and 3a-c on each core. * * @param[in] ErrorData Details about the error condition. * @param[in] StdHeader Config handle for library and services. * */ VOID STATIC F15PmPwrCheckCore ( IN VOID *ErrorData, IN AMD_CONFIG_PARAMS *StdHeader ) { UINT8 i; UINT8 HwPsMaxVal; UINT8 SwPsMaxVal; UINT8 HwDisPsNum; UINT8 CurrentSwPs; UINT8 PsDisableCount; UINT64 LocalMsrRegister; CPU_SPECIFIC_SERVICES *FamilySpecificServices; if (IsCorePairPrimary (FirstCoreIsComputeUnitPrimary, StdHeader)) { // P-state MSRs are shared, so only 1 core per compute unit needs to perform this GetCpuServicesOfCurrentCore ((CONST CPU_SPECIFIC_SERVICES **)&FamilySpecificServices, StdHeader); HwPsMaxVal = (((PWRCHK_ERROR_DATA *) ErrorData)->HwPstateNumber - 1); HwDisPsNum = (((PWRCHK_ERROR_DATA *) ErrorData)->HwPstateNumber - ((PWRCHK_ERROR_DATA *) ErrorData)->AllowablePstateNumber); LibAmdMsrRead (MSR_PSTATE_STS, &LocalMsrRegister, StdHeader); CurrentSwPs = (UINT8) (((PSTATE_STS_MSR *) &LocalMsrRegister)->CurPstate); LibAmdMsrRead (MSR_PSTATE_CURRENT_LIMIT, &LocalMsrRegister, StdHeader); SwPsMaxVal = (UINT8) (((PSTATE_CURLIM_MSR *) &LocalMsrRegister)->PstateMaxVal); PsDisableCount = 0; if (((PWRCHK_ERROR_DATA *) ErrorData)->AllowablePstateNumber == 0) { // All P-States are over the limit. // Step 1 // Transition to Pstate Max if not there already if (CurrentSwPs != SwPsMaxVal) { FamilySpecificServices->TransitionPstate (FamilySpecificServices, SwPsMaxVal, (BOOLEAN) TRUE, StdHeader); } // Step 2 // If Pstate Max is not P0, copy Pstate max contents to P0 and switch // to P0. if (SwPsMaxVal != 0) { F15PmPwrChkCopyPstate (((PWRCHK_ERROR_DATA *) ErrorData)->NumberOfBoostStates, HwPsMaxVal, StdHeader); FamilySpecificServices->TransitionPstate (FamilySpecificServices, (UINT8) 0, (BOOLEAN) TRUE, StdHeader); } // Disable all SW P-states except P0 PsDisableCount = ((PWRCHK_ERROR_DATA *) ErrorData)->NumberOfSwPstatesDisabled - 1; } else { // At least one P-State is under the limit & at least one P-State is // over the limit. if (((PWRCHK_ERROR_DATA *) ErrorData)->NumberOfBoostStates > HwDisPsNum) { // A subset of boosted P-states are disabled. Copy the contents of the // highest performance boosted P-state still enabled to the boosted // P-states that have been disabled. for (i = 0; i < HwDisPsNum; i++) { F15PmPwrChkCopyPstate (i, HwDisPsNum, StdHeader); } } else if (((PWRCHK_ERROR_DATA *) ErrorData)->NumberOfSwPstatesDisabled != 0) { // Move remaining P-state register(s) up // Step 1 // Transition to a valid Pstate if current Pstate has been disabled if (CurrentSwPs < ((PWRCHK_ERROR_DATA *) ErrorData)->NumberOfSwPstatesDisabled) { FamilySpecificServices->TransitionPstate (FamilySpecificServices, ((PWRCHK_ERROR_DATA *) ErrorData)->NumberOfSwPstatesDisabled, (BOOLEAN) TRUE, StdHeader); CurrentSwPs = ((PWRCHK_ERROR_DATA *) ErrorData)->NumberOfSwPstatesDisabled; } // Step 2 // Move enabled Pstates up and disable the remainder for (i = ((PWRCHK_ERROR_DATA *) ErrorData)->NumberOfBoostStates; (i + ((PWRCHK_ERROR_DATA *) ErrorData)->NumberOfSwPstatesDisabled) <= HwPsMaxVal; i++) { F15PmPwrChkCopyPstate (i, (i + ((PWRCHK_ERROR_DATA *) ErrorData)->NumberOfSwPstatesDisabled), StdHeader); } // Step 3 // Transition to current COF/VID at shifted location CurrentSwPs = (CurrentSwPs - ((PWRCHK_ERROR_DATA *) ErrorData)->NumberOfSwPstatesDisabled); FamilySpecificServices->TransitionPstate (FamilySpecificServices, CurrentSwPs, (BOOLEAN) TRUE, StdHeader); // Disable the appropriate number of P-states PsDisableCount = ((PWRCHK_ERROR_DATA *) ErrorData)->NumberOfSwPstatesDisabled; } } // Disable the appropriate P-states if any, starting from HW Pmin for (i = 0; i < PsDisableCount; i++) { FamilySpecificServices->DisablePstate (FamilySpecificServices, (HwPsMaxVal - i), StdHeader); } } } /*---------------------------------------------------------------------------------------*/ /** * Copies the contents of one P-State MSR to another. * * @param[in] Dest Destination p-state number * @param[in] Src Source p-state number * @param[in] StdHeader Config handle for library and services * */ VOID STATIC F15PmPwrChkCopyPstate ( IN UINT8 Dest, IN UINT8 Src, IN AMD_CONFIG_PARAMS *StdHeader ) { UINT64 LocalMsrRegister; LibAmdMsrRead ((UINT32) (PS_REG_BASE + Src), &LocalMsrRegister, StdHeader); LibAmdMsrWrite ((UINT32) (PS_REG_BASE + Dest), &LocalMsrRegister, StdHeader); }