/* $NoKeywords:$ */ /** * @file * * Config Fch Gpp controller * * Init Gpp Controller features. * * @xrefitem bom "File Content Label" "Release Content" * @e project: AGESA * @e sub-project: FCH * @e \$Revision: 49456 $ @e \$Date: 2011-03-24 04:13:38 +0800 (Thu, 24 Mar 2011) $ * */ /* ***************************************************************************** * * Copyright (c) 2011, Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Advanced Micro Devices, Inc. nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **************************************************************************** */ #include "FchPlatform.h" #include "Filecode.h" #define FILECODE PROC_FCH_PCIE_GPPLATE_FILECODE // // Declaration of local functions // VOID FchGppSetAspm (IN UINT32 PciAddress, IN UINT8 LxState, IN AMD_CONFIG_PARAMS *StdHeader); VOID FchGppSetEpAspm (IN UINT32 PciAddress, IN UINT8 LxState, IN AMD_CONFIG_PARAMS *StdHeader); VOID FchGppValidateAspm (IN UINT32 PciAddress, IN UINT8 *LxState, IN AMD_CONFIG_PARAMS *StdHeader); UINT8 FchFindPciCap (IN UINT32 PciAddress, IN UINT8 TargetCapId, IN AMD_CONFIG_PARAMS *StdHeader); // //----------------------------------------------------------------------------------- // GPP initialization sequence: // // 1) Set port enable bit fields by current GPP link configuration mode // 2) Deassert GPP reset and pull EP out of reset - Clear GPP_RESET (abcfg:0xC0[8] = 0) // 3) Loop polling for the link status of all ports // 4) Misc operations after link training: // - (optional) Detect GFX device // - Hide empty GPP configuration spaces (Disable empty GPP ports) // - (optional) Power down unused GPP ports // - (optional) Configure PCIE_P2P_Int_Map (abcfg:0xC4[7:0]) // 5) GPP init completed // // // *) Gen2 vs Gen1 // Gen2 mode Gen1 mode // --------------------------------------------------------------- // STRAP_PHY_PLL_CLKF[6:0] 7'h32 7'h19 // STRAP_BIF_GEN2_EN 1 0 // // PCIE_PHY_PLL clock locks @ 5GHz // // /** * FchInitLateGpp - Prepare Gpp controller to boot to OS. * * PcieGppLateInit * * @param[in] FchDataPtr Fch configuration structure pointer. * */ VOID FchInitLateGpp ( IN VOID *FchDataPtr ) { UINT8 PortId; UINT8 BusNum; UINT8 AspmValue; UINT8 PortAspmValue; UINT8 AllowStrapControlByAB; UINT8 FchGppPhyPllPowerDown; FCH_GPP_PORT_CONFIG *PortCfg; UINT32 PciAspmValue; UINT32 AbValue; FCH_DATA_BLOCK *LocalCfgPtr; AMD_CONFIG_PARAMS *StdHeader; LocalCfgPtr = (FCH_DATA_BLOCK *) FchDataPtr; StdHeader = LocalCfgPtr->StdHeader; // // Disable hidden register decode and serial number capability // AbValue = ReadAlink (FCH_ABCFG_REG330 | (UINT32) (ABCFG << 29), StdHeader); WriteAlink (FCH_ABCFG_REG330 | (UINT32) (ABCFG << 29), AbValue & ~(BIT26 + BIT10), StdHeader); if (ReadAlink (FCH_ABCFG_REGC0 | (UINT32) (ABCFG << 29), StdHeader) & BIT8) { return; } // // Configure ASPM // AspmValue = (UINT8)LocalCfgPtr->Gpp.GppPortAspm; FchGppPhyPllPowerDown = (UINT8) LocalCfgPtr->Gpp.GppPhyPllPowerDown; AllowStrapControlByAB = 0x01; for ( PortId = 0; PortId < MAX_GPP_PORTS; PortId++ ) { // // write pci_reg3d with 0x01 to fix yellow mark for GPP bridge under some OS // when native PCIE is enabled but MSI is not available // BIF/GPP allowing strap STRAP_BIF_INTERRUPT_PIN_SB controlled by AB reg // PortCfg = &LocalCfgPtr->Gpp.PortCfg[PortId]; if (PortCfg->PortHotPlug) { RwPci (PCI_ADDRESS (0, 21, PortId, 0x04), AccessWidth8, 0xFE, 0x00, StdHeader); ///clear IO enable to fix possible hotplug hang } WritePci (PCI_ADDRESS (0, 21, PortId, 0x3d), AccessWidth8, &AllowStrapControlByAB, StdHeader); ReadPci (PCI_ADDRESS (0, 21, PortId, 0x19), AccessWidth8, &BusNum, StdHeader); if (BusNum != 0xFF) { ReadPci (PCI_ADDRESS (BusNum, 0, 0, 0x00), AccessWidth32, &PciAspmValue, StdHeader); if (PciAspmValue != 0xffffffff) { PortAspmValue = AspmValue; // // Validate ASPM support on EP side // FchGppValidateAspm (PCI_ADDRESS (BusNum, 0, 0, 0), &PortAspmValue, StdHeader); // // Set ASPM on EP side // FchGppSetEpAspm (PCI_ADDRESS (BusNum, 0, 0, 0), PortAspmValue, StdHeader); // // Set ASPM on port side // FchGppSetAspm (PCI_ADDRESS (0, 21, PortId, 0), PortAspmValue, StdHeader); } } RwAlink ((FCH_RCINDXP_REG02 | (UINT32) (RCINDXP << 29) | (PortId << 24) ), ~(BIT15), (BIT15), StdHeader); } RwAlink ((FCH_RCINDXC_REG02 | (UINT32) (RCINDXC << 29)), ~(BIT0), (BIT0), StdHeader); // // Configure Lock HWInit registers // AbValue = ReadAlink (FCH_ABCFG_REGC0 | (UINT32) (ABCFG << 29), StdHeader); if (AbValue & 0xF0) { AbValue = ReadAlink (FCH_RCINDXC_REG10 | (UINT32) (RCINDXC << 29), StdHeader); WriteAlink (FCH_RCINDXC_REG10 | (UINT32) (RCINDXC << 29), AbValue | BIT0, StdHeader); /// Set HWINIT_WR_LOCK if ( FchGppPhyPllPowerDown == TRUE ) { // // Power Saving Feature for GPP Lanes // // Set PCIE_P_CNTL in Alink PCIEIND space // AbValue = ReadAlink (RC_INDXC_REG40 | (UINT32) (RCINDXC << 29), StdHeader); AbValue |= BIT12 + BIT3 + BIT0; AbValue &= ~(BIT9 + BIT4); WriteAlink (RC_INDXC_REG40 | (UINT32) (RCINDXC << 29), AbValue, StdHeader); RwAlink (FCH_RCINDXC_REG02, ~(BIT8), (BIT8), StdHeader); RwAlink (FCH_RCINDXC_REG02, ~(BIT3), (BIT3), StdHeader); } } // // Restore strap0 via override // if (LocalCfgPtr->Gpp.PcieAer) { RwAlink (FCH_ABCFG_REG310 | (UINT32) (ABCFG << 29), 0xFFFFFFFF, BIT7, StdHeader); RwAlink (RC_INDXC_REGC0, 0xFFFFFFFF, BIT9, StdHeader); } } /** * FchGppSetAspm - Set GPP ASPM * * * @param[in] PciAddress PCI Address. * @param[in] LxState Lane State. * @param[in] StdHeader * */ VOID FchGppSetAspm ( IN UINT32 PciAddress, IN UINT8 LxState, IN AMD_CONFIG_PARAMS *StdHeader ) { UINT8 PcieCapOffset; UINT8 DeviceType; PcieCapOffset = FchFindPciCap (PciAddress, PCIE_CAP_ID, StdHeader); if (PcieCapOffset) { // // Read link capabilities register (0x0C[11:10] - ASPM support) // ReadPci (PciAddress + PcieCapOffset + 0x0D, AccessWidth8, &DeviceType, StdHeader); if (DeviceType & BIT2) { DeviceType = (DeviceType >> 2) & (BIT1 + BIT0); // // Set ASPM state in link control register // RwPci (PciAddress + PcieCapOffset + 0x10, AccessWidth8, 0xffffffff, LxState & DeviceType, StdHeader); } } } /** * FchGppSetEpAspm - Set EP ASPM * * * @param[in] PciAddress PCI Address. * @param[in] LxState Lane State. * @param[in] StdHeader * */ VOID FchGppSetEpAspm ( IN UINT32 PciAddress, IN UINT8 LxState, IN AMD_CONFIG_PARAMS *StdHeader ) { UINT8 DeviceType; UINT8 MaxFuncs; UINT32 DevBDF; MaxFuncs = 1; ReadPci (PciAddress + 0x0E, AccessWidth8, &DeviceType, StdHeader); if (DeviceType & BIT7) { MaxFuncs = 8; /// multi-function device } while (MaxFuncs != 0) { DevBDF = PciAddress + (UINT32) ((MaxFuncs - 1) << 16); FchGppSetAspm (DevBDF, LxState, StdHeader); MaxFuncs--; } } /** * FchGppValidateAspm - Validate EndPoint support for GPP ASPM * * * @param[in] PciAddress PCI Address. * @param[in] LxState Lane State. * @param[in] StdHeader * */ VOID FchGppValidateAspm ( IN UINT32 PciAddress, IN UINT8 *LxState, IN AMD_CONFIG_PARAMS *StdHeader ) { UINT8 PcieCapOffset; UINT8 DeviceType; UINT8 MaxFuncs; UINT32 DevBDF; MaxFuncs = 1; ReadPci (PciAddress + 0x0E, AccessWidth8, &DeviceType, StdHeader); if (DeviceType & BIT7) { MaxFuncs = 8; /// multi-function device } while (MaxFuncs != 0) { DevBDF = PciAddress + (UINT32) ((MaxFuncs - 1) << 16); PcieCapOffset = FchFindPciCap (DevBDF, PCIE_CAP_ID, StdHeader); if (PcieCapOffset) { // // Read link capabilities register (0x0C[11:10] - ASPM support) // ReadPci (DevBDF + PcieCapOffset + 0x0D, AccessWidth8, &DeviceType, StdHeader); if (DeviceType & BIT2) { DeviceType = (DeviceType >> 2) & (BIT1 + BIT0); // // Update ASPM state as what endpoint support // *LxState &= DeviceType; } } MaxFuncs--; } } /** * FchFindPciCap - Find PCI Cap * * * @param[in] PciAddress PCI Address. * @param[in] TargetCapId Target Cap ID. * @param[in] StdHeader * */ UINT8 FchFindPciCap ( IN UINT32 PciAddress, IN UINT8 TargetCapId, IN AMD_CONFIG_PARAMS *StdHeader ) { UINT8 NextCapPtr; UINT8 CapId; NextCapPtr = 0x34; while (NextCapPtr != 0) { ReadPci (PciAddress + NextCapPtr, AccessWidth8, &NextCapPtr, StdHeader); if (NextCapPtr == 0xff) { return 0; } if (NextCapPtr != 0) { ReadPci (PciAddress + NextCapPtr, AccessWidth8, &CapId, StdHeader); if (CapId == TargetCapId) { break; } else { NextCapPtr++; } } } return NextCapPtr; }