/* * This file is part of the coreboot project. * * Copyright (C) 2008-2009 coresystems GmbH * 2012 secunet Security Networks AG * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; version 2 of * the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include "i82801ix.h" #include "nvs.h" /* While we read PMBASE dynamically in case it changed, let's * initialize it with a sane value */ u16 pmbase = DEFAULT_PMBASE; u8 smm_initialized = 0; /* GNVS needs to be updated by an 0xEA PM Trap (B2) after it has been located * by coreboot. */ global_nvs_t *gnvs = (global_nvs_t *)0x0; void *tcg = (void *)0x0; void *smi1 = (void *)0x0; /** * @brief read and clear PM1_STS * @return PM1_STS register */ static u16 reset_pm1_status(void) { u16 reg16; reg16 = inw(pmbase + PM1_STS); /* set status bits are cleared by writing 1 to them */ outw(reg16, pmbase + PM1_STS); return reg16; } static void dump_pm1_status(u16 pm1_sts) { printk(BIOS_DEBUG, "PM1_STS: "); if (pm1_sts & (1 << 15)) printk(BIOS_DEBUG, "WAK "); if (pm1_sts & (1 << 14)) printk(BIOS_DEBUG, "PCIEXPWAK "); if (pm1_sts & (1 << 11)) printk(BIOS_DEBUG, "PRBTNOR "); if (pm1_sts & (1 << 10)) printk(BIOS_DEBUG, "RTC "); if (pm1_sts & (1 << 8)) printk(BIOS_DEBUG, "PWRBTN "); if (pm1_sts & (1 << 5)) printk(BIOS_DEBUG, "GBL "); if (pm1_sts & (1 << 4)) printk(BIOS_DEBUG, "BM "); if (pm1_sts & (1 << 0)) printk(BIOS_DEBUG, "TMROF "); printk(BIOS_DEBUG, "\n"); } /** * @brief read and clear SMI_STS * @return SMI_STS register */ static u32 reset_smi_status(void) { u32 reg32; reg32 = inl(pmbase + SMI_STS); /* set status bits are cleared by writing 1 to them */ outl(reg32, pmbase + SMI_STS); return reg32; } static void dump_smi_status(u32 smi_sts) { printk(BIOS_DEBUG, "SMI_STS: "); if (smi_sts & (1 << 27)) printk(BIOS_DEBUG, "GPIO_UNLOCK "); if (smi_sts & (1 << 26)) printk(BIOS_DEBUG, "SPI "); if (smi_sts & (1 << 21)) printk(BIOS_DEBUG, "MONITOR "); if (smi_sts & (1 << 20)) printk(BIOS_DEBUG, "PCI_EXP_SMI "); if (smi_sts & (1 << 18)) printk(BIOS_DEBUG, "INTEL_USB2 "); if (smi_sts & (1 << 17)) printk(BIOS_DEBUG, "LEGACY_USB2 "); if (smi_sts & (1 << 16)) printk(BIOS_DEBUG, "SMBUS_SMI "); if (smi_sts & (1 << 15)) printk(BIOS_DEBUG, "SERIRQ_SMI "); if (smi_sts & (1 << 14)) printk(BIOS_DEBUG, "PERIODIC "); if (smi_sts & (1 << 13)) printk(BIOS_DEBUG, "TCO "); if (smi_sts & (1 << 12)) printk(BIOS_DEBUG, "DEVMON "); if (smi_sts & (1 << 11)) printk(BIOS_DEBUG, "MCSMI "); if (smi_sts & (1 << 10)) printk(BIOS_DEBUG, "GPI "); if (smi_sts & (1 << 9)) printk(BIOS_DEBUG, "GPE0 "); if (smi_sts & (1 << 8)) printk(BIOS_DEBUG, "PM1 "); if (smi_sts & (1 << 6)) printk(BIOS_DEBUG, "SWSMI_TMR "); if (smi_sts & (1 << 5)) printk(BIOS_DEBUG, "APM "); if (smi_sts & (1 << 4)) printk(BIOS_DEBUG, "SLP_SMI "); if (smi_sts & (1 << 3)) printk(BIOS_DEBUG, "LEGACY_USB "); if (smi_sts & (1 << 2)) printk(BIOS_DEBUG, "BIOS "); printk(BIOS_DEBUG, "\n"); } /** * @brief read and clear GPE0_STS * @return GPE0_STS register */ static u64 reset_gpe0_status(void) { u32 reg_h, reg_l; reg_l = inl(pmbase + GPE0_STS); reg_h = inl(pmbase + GPE0_STS + 4); /* set status bits are cleared by writing 1 to them */ outl(reg_l, pmbase + GPE0_STS); outl(reg_h, pmbase + GPE0_STS + 4); return (((u64)reg_h) << 32) | reg_l; } static void dump_gpe0_status(u64 gpe0_sts) { int i; printk(BIOS_DEBUG, "GPE0_STS: "); if (gpe0_sts & (1LL << 32)) printk(BIOS_DEBUG, "USB6 "); for (i=31; i>= 16; i--) { if (gpe0_sts & (1 << i)) printk(BIOS_DEBUG, "GPIO%d ", (i-16)); } if (gpe0_sts & (1 << 14)) printk(BIOS_DEBUG, "USB4 "); if (gpe0_sts & (1 << 13)) printk(BIOS_DEBUG, "PME_B0 "); if (gpe0_sts & (1 << 12)) printk(BIOS_DEBUG, "USB3 "); if (gpe0_sts & (1 << 11)) printk(BIOS_DEBUG, "PME "); if (gpe0_sts & (1 << 10)) printk(BIOS_DEBUG, "EL_SCI/BATLOW "); if (gpe0_sts & (1 << 9)) printk(BIOS_DEBUG, "PCI_EXP "); if (gpe0_sts & (1 << 8)) printk(BIOS_DEBUG, "RI "); if (gpe0_sts & (1 << 7)) printk(BIOS_DEBUG, "SMB_WAK "); if (gpe0_sts & (1 << 6)) printk(BIOS_DEBUG, "TCO_SCI "); if (gpe0_sts & (1 << 5)) printk(BIOS_DEBUG, "USB5 "); if (gpe0_sts & (1 << 4)) printk(BIOS_DEBUG, "USB2 "); if (gpe0_sts & (1 << 3)) printk(BIOS_DEBUG, "USB1 "); if (gpe0_sts & (1 << 2)) printk(BIOS_DEBUG, "SWGPE "); if (gpe0_sts & (1 << 1)) printk(BIOS_DEBUG, "HOT_PLUG "); if (gpe0_sts & (1 << 0)) printk(BIOS_DEBUG, "THRM "); printk(BIOS_DEBUG, "\n"); } /** * @brief read and clear TCOx_STS * @return TCOx_STS registers */ static u32 reset_tco_status(void) { u32 tcobase = pmbase + 0x60; u32 reg32; reg32 = inl(tcobase + 0x04); /* set status bits are cleared by writing 1 to them */ outl(reg32 & ~(1<<18), tcobase + 0x04); // Don't clear BOOT_STS before SECOND_TO_STS if (reg32 & (1 << 18)) outl(reg32 & (1<<18), tcobase + 0x04); // clear BOOT_STS return reg32; } static void dump_tco_status(u32 tco_sts) { printk(BIOS_DEBUG, "TCO_STS: "); if (tco_sts & (1 << 20)) printk(BIOS_DEBUG, "SMLINK_SLV "); if (tco_sts & (1 << 18)) printk(BIOS_DEBUG, "BOOT "); if (tco_sts & (1 << 17)) printk(BIOS_DEBUG, "SECOND_TO "); if (tco_sts & (1 << 16)) printk(BIOS_DEBUG, "INTRD_DET "); if (tco_sts & (1 << 12)) printk(BIOS_DEBUG, "DMISERR "); if (tco_sts & (1 << 10)) printk(BIOS_DEBUG, "DMISMI "); if (tco_sts & (1 << 9)) printk(BIOS_DEBUG, "DMISCI "); if (tco_sts & (1 << 8)) printk(BIOS_DEBUG, "BIOSWR "); if (tco_sts & (1 << 7)) printk(BIOS_DEBUG, "NEWCENTURY "); if (tco_sts & (1 << 3)) printk(BIOS_DEBUG, "TIMEOUT "); if (tco_sts & (1 << 2)) printk(BIOS_DEBUG, "TCO_INT "); if (tco_sts & (1 << 1)) printk(BIOS_DEBUG, "SW_TCO "); if (tco_sts & (1 << 0)) printk(BIOS_DEBUG, "NMI2SMI "); printk(BIOS_DEBUG, "\n"); } int southbridge_io_trap_handler(int smif) { switch (smif) { case 0x32: printk(BIOS_DEBUG, "OS Init\n"); /* gnvs->smif: * On success, the IO Trap Handler returns 0 * On failure, the IO Trap Handler returns a value != 0 */ gnvs->smif = 0; return 1; /* IO trap handled */ } /* Not handled */ return 0; } /** * @brief Set the EOS bit */ void southbridge_smi_set_eos(void) { u8 reg8; reg8 = inb(pmbase + SMI_EN); reg8 |= EOS; outb(reg8, pmbase + SMI_EN); } static void southbridge_smi_apmc(unsigned int node, smm_state_save_area_t *state_save) { u32 pmctrl; u8 reg8; /* Emulate B2 register as the FADT / Linux expects it */ reg8 = inb(APM_CNT); if (mainboard_smi_apmc(reg8)) return; switch (reg8) { case APM_CNT_CST_CONTROL: /* Calling this function seems to cause * some kind of race condition in Linux * and causes a kernel oops */ printk(BIOS_DEBUG, "C-state control\n"); break; case APM_CNT_PST_CONTROL: /* Calling this function seems to cause * some kind of race condition in Linux * and causes a kernel oops */ printk(BIOS_DEBUG, "P-state control\n"); break; case APM_CNT_ACPI_DISABLE: pmctrl = inl(pmbase + PM1_CNT); pmctrl &= ~SCI_EN; outl(pmctrl, pmbase + PM1_CNT); printk(BIOS_DEBUG, "SMI#: ACPI disabled.\n"); break; case APM_CNT_ACPI_ENABLE: pmctrl = inl(pmbase + PM1_CNT); pmctrl |= SCI_EN; outl(pmctrl, pmbase + PM1_CNT); printk(BIOS_DEBUG, "SMI#: ACPI enabled.\n"); break; case APM_CNT_GNVS_UPDATE: if (smm_initialized) { printk(BIOS_DEBUG, "SMI#: SMM structures already initialized!\n"); return; } gnvs = *(global_nvs_t **)0x500; tcg = *(void **)0x504; smi1 = *(void **)0x508; smm_initialized = 1; printk(BIOS_DEBUG, "SMI#: Setting up structures to %p, %p, %p\n", gnvs, tcg, smi1); break; default: printk(BIOS_DEBUG, "SMI#: Unknown function APM_CNT=%02x\n", reg8); } } static void southbridge_smi_pm1(unsigned int node, smm_state_save_area_t *state_save) { u16 pm1_sts; volatile u8 cmos_status; pm1_sts = reset_pm1_status(); dump_pm1_status(pm1_sts); /* While OSPM is not active, poweroff immediately * on a power button event. */ if (pm1_sts & PWRBTN_STS) { // power button pressed u32 reg32; reg32 = (7 << 10) | (1 << 13); outl(reg32, pmbase + PM1_CNT); } if (pm1_sts & RTC_STS) { /* read RTC status register to disable the interrupt */ cmos_status = cmos_read(RTC_REG_C); printk(BIOS_DEBUG, "RTC IRQ status: %02X\n", cmos_status); } } static void southbridge_smi_gpe0(unsigned int node, smm_state_save_area_t *state_save) { u32 gpe0_sts; gpe0_sts = reset_gpe0_status(); dump_gpe0_status(gpe0_sts); } static void southbridge_smi_gpi(unsigned int node, smm_state_save_area_t *state_save) { u16 reg16; reg16 = inw(pmbase + ALT_GP_SMI_STS); outl(reg16, pmbase + ALT_GP_SMI_STS); reg16 &= inw(pmbase + ALT_GP_SMI_EN); mainboard_smi_gpi(reg16); if (reg16) printk(BIOS_DEBUG, "GPI (mask %04x)\n",reg16); } static void southbridge_smi_tco(unsigned int node, smm_state_save_area_t *state_save) { u32 tco_sts; tco_sts = reset_tco_status(); /* Any TCO event? */ if (!tco_sts) return; if (tco_sts & (1 << 8)) { // BIOSWR u8 bios_cntl; bios_cntl = pci_read_config16(PCI_DEV(0, 0x1f, 0), 0xdc); if (bios_cntl & 1) { /* BWE is RW, so the SMI was caused by a * write to BWE, not by a write to the BIOS */ /* This is the place where we notice someone * is trying to tinker with the BIOS. We are * trying to be nice and just ignore it. A more * resolute answer would be to power down the * box. */ printk(BIOS_DEBUG, "Switching back to RO\n"); pci_write_config32(PCI_DEV(0, 0x1f, 0), 0xdc, (bios_cntl & ~1)); } /* No else for now? */ } else if (tco_sts & (1 << 3)) { /* TIMEOUT */ /* Handle TCO timeout */ printk(BIOS_DEBUG, "TCO Timeout.\n"); } else { dump_tco_status(tco_sts); } } #if DEBUG_PERIODIC_SMIS static void southbridge_smi_periodic(unsigned int node, smm_state_save_area_t *state_save) { printk(BIOS_DEBUG, "Periodic SMI.\n"); } #endif static void southbridge_smi_monitor(unsigned int node, smm_state_save_area_t *state_save) { #define IOTRAP(x) (trap_sts & (1 << x)) u32 trap_sts, trap_cycle; u32 data, mask = 0; int i; trap_sts = RCBA32(0x1e00); // TRSR - Trap Status Register RCBA32(0x1e00) = trap_sts; // Clear trap(s) in TRSR trap_cycle = RCBA32(0x1e10); for (i=16; i<20; i++) { if (trap_cycle & (1 << i)) mask |= (0xff << ((i - 16) << 3)); } /* IOTRAP(3) SMI function call */ if (IOTRAP(3)) { if (gnvs && gnvs->smif) io_trap_handler(gnvs->smif); // call function smif return; } /* IOTRAP(2) currently unused * IOTRAP(1) currently unused */ /* IOTRAP(0) SMIC */ if (IOTRAP(0)) { if (!(trap_cycle & (1 << 24))) { // It's a write printk(BIOS_DEBUG, "SMI1 command\n"); data = RCBA32(0x1e18); data &= mask; // if (smi1) // southbridge_smi_command(data); // return; } // Fall through to debug } printk(BIOS_DEBUG, " trapped io address = 0x%x\n", trap_cycle & 0xfffc); for (i=0; i < 4; i++) if(IOTRAP(i)) printk(BIOS_DEBUG, " TRAPĀ = %d\n", i); printk(BIOS_DEBUG, " AHBE = %x\n", (trap_cycle >> 16) & 0xf); printk(BIOS_DEBUG, " MASK = 0x%08x\n", mask); printk(BIOS_DEBUG, " read/write: %s\n", (trap_cycle & (1 << 24)) ? "read" : "write"); if (!(trap_cycle & (1 << 24))) { /* Write Cycle */ data = RCBA32(0x1e18); printk(BIOS_DEBUG, " iotrap written data = 0x%08x\n", data); } #undef IOTRAP } typedef void (*smi_handler_t)(unsigned int node, smm_state_save_area_t *state_save); smi_handler_t southbridge_smi[32] = { NULL, // [0] reserved NULL, // [1] reserved NULL, // [2] BIOS_STS NULL, // [3] LEGACY_USB_STS NULL, // [4] SLP_SMI_STS southbridge_smi_apmc, // [5] APM_STS NULL, // [6] SWSMI_TMR_STS NULL, // [7] reserved southbridge_smi_pm1, // [8] PM1_STS southbridge_smi_gpe0, // [9] GPE0_STS southbridge_smi_gpi, // [10] GPI_STS NULL, // [11] MCSMI_STS NULL, // [12] DEVMON_STS southbridge_smi_tco, // [13] TCO_STS #if DEBUG_PERIODIC_SMIS southbridge_smi_periodic, // [14] PERIODIC_STS #else NULL, // [14] PERIODIC_STS #endif NULL, // [15] SERIRQ_SMI_STS NULL, // [16] SMBUS_SMI_STS NULL, // [17] LEGACY_USB2_STS NULL, // [18] INTEL_USB2_STS NULL, // [19] reserved NULL, // [20] PCI_EXP_SMI_STS southbridge_smi_monitor, // [21] MONITOR_STS NULL, // [22] reserved NULL, // [23] reserved NULL, // [24] reserved NULL, // [25] reserved NULL, // [26] SPI_STS NULL, // [27] reserved NULL, // [28] reserved NULL, // [29] reserved NULL, // [30] reserved NULL // [31] reserved }; static u32 southbrigde_smi_mask_events(u32 smi_sts) { /* Clear all disabled bits in SMI_EN but the reserved ones. */ smi_sts &= inl(pmbase + SMI_EN) | 0xf7f99700; /* Check if SCI is enabled. */ if (inl(pmbase + PM1_CNT) & SCI_EN) /* Clear PM1, GPE. */ smi_sts &= ~((1 << 8) | (1 << 9)); /* Check if SPI generates SMI. */ if (!(RCBA16(0x3806) & (1 << 15)) && !(RCBA16(0x3891) & (1 << 15))) /* Clear SPI. */ smi_sts &= ~(1 << 26); return smi_sts; } /** * @brief Interrupt handler for SMI# * * @param node * @param *state_save */ void southbridge_smi_handler(unsigned int node, smm_state_save_area_t *state_save) { int i, dump = 0; u32 smi_sts; /* Update global variable pmbase */ pmbase = pci_read_config16(PCI_DEV(0, 0x1f, 0), D31F0_PMBASE) & 0xfffc; /* We need to clear the SMI status registers, or we won't see what's * happening in the following calls. */ smi_sts = reset_smi_status(); /* Filter all non-enabled SMI events */ smi_sts = southbrigde_smi_mask_events(smi_sts); /* Call SMI sub handler for each of the status bits */ for (i = 0; i < 31; i++) { if (smi_sts & (1 << i)) { if (southbridge_smi[i]) southbridge_smi[i](node, state_save); else { printk(BIOS_DEBUG, "SMI_STS[%d] occurred, but no " "handler available.\n", i); dump = 1; } } } if(dump) { dump_smi_status(smi_sts); } }