/* * This file is part of the coreboot project. * * Copyright (C) 2008-2009 coresystems GmbH * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; version 2 of * the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, * MA 02110-1301 USA */ #include #include #include #include #include #include #include "i82801gx.h" #include "i82801gx_power.h" #define DEBUG_SMI #define APM_CNT 0xb2 #define CST_CONTROL 0x85 // 0x85 crashes the box #define PST_CONTROL 0x80 // 0x80 crashes the box #define ACPI_DISABLE 0x1e #define ACPI_ENABLE 0xe1 #define GNVS_UPDATE 0xea #define APM_STS 0xb3 /* I945 */ #define SMRAM 0x9d #define D_OPEN (1 << 6) #define D_CLS (1 << 5) #define D_LCK (1 << 4) #define G_SMRANE (1 << 3) #define C_BASE_SEG ((0 << 2) | (1 << 1) | (0 << 0)) #include "i82801gx_nvs.h" /* While we read PMBASE dynamically in case it changed, let's * initialize it with a sane value */ u16 pmbase = DEFAULT_PMBASE; u8 smm_initialized = 0; /* GNVS needs to be updated by an 0xEA PM Trap (B2) after it has been located * by coreboot. */ global_nvs_t *gnvs = (global_nvs_t *)0x0; void *tcg = (void *)0x0; void *smi1 = (void *)0x0; /** * @brief read and clear PM1_STS * @return PM1_STS register */ static u16 reset_pm1_status(void) { u16 reg16; reg16 = inw(pmbase + PM1_STS); /* set status bits are cleared by writing 1 to them */ outw(reg16, pmbase + PM1_STS); return reg16; } static void dump_pm1_status(u16 pm1_sts) { printk_spew("PM1_STS: "); if (pm1_sts & (1 << 15)) printk_spew("WAK "); if (pm1_sts & (1 << 14)) printk_spew("PCIEXPWAK "); if (pm1_sts & (1 << 11)) printk_spew("PRBTNOR "); if (pm1_sts & (1 << 10)) printk_spew("RTC "); if (pm1_sts & (1 << 8)) printk_spew("PWRBTN "); if (pm1_sts & (1 << 5)) printk_spew("GBL "); if (pm1_sts & (1 << 4)) printk_spew("BM "); if (pm1_sts & (1 << 0)) printk_spew("TMROF "); printk_spew("\n"); } /** * @brief read and clear SMI_STS * @return SMI_STS register */ static u32 reset_smi_status(void) { u32 reg32; reg32 = inl(pmbase + SMI_STS); /* set status bits are cleared by writing 1 to them */ outl(reg32, pmbase + SMI_STS); return reg32; } static void dump_smi_status(u32 smi_sts) { printk_debug("SMI_STS: "); if (smi_sts & (1 << 26)) printk_debug("SPI "); if (smi_sts & (1 << 25)) printk_debug("EL_SMI "); if (smi_sts & (1 << 21)) printk_debug("MONITOR "); if (smi_sts & (1 << 20)) printk_debug("PCI_EXP_SMI "); if (smi_sts & (1 << 18)) printk_debug("INTEL_USB2 "); if (smi_sts & (1 << 17)) printk_debug("LEGACY_USB2 "); if (smi_sts & (1 << 16)) printk_debug("SMBUS_SMI "); if (smi_sts & (1 << 15)) printk_debug("SERIRQ_SMI "); if (smi_sts & (1 << 14)) printk_debug("PERIODIC "); if (smi_sts & (1 << 13)) printk_debug("TCO "); if (smi_sts & (1 << 12)) printk_debug("DEVMON "); if (smi_sts & (1 << 11)) printk_debug("MCSMI "); if (smi_sts & (1 << 10)) printk_debug("GPI "); if (smi_sts & (1 << 9)) printk_debug("GPE0 "); if (smi_sts & (1 << 8)) printk_debug("PM1 "); if (smi_sts & (1 << 6)) printk_debug("SWSMI_TMR "); if (smi_sts & (1 << 5)) printk_debug("APM "); if (smi_sts & (1 << 4)) printk_debug("SLP_SMI "); if (smi_sts & (1 << 3)) printk_debug("LEGACY_USB "); if (smi_sts & (1 << 2)) printk_debug("BIOS "); printk_debug("\n"); } /** * @brief read and clear GPE0_STS * @return GPE0_STS register */ static u32 reset_gpe0_status(void) { u32 reg32; reg32 = inl(pmbase + GPE0_STS); /* set status bits are cleared by writing 1 to them */ outl(reg32, pmbase + GPE0_STS); return reg32; } static void dump_gpe0_status(u32 gpe0_sts) { int i; printk_debug("GPE0_STS: "); for (i=31; i<= 16; i--) { if (gpe0_sts & (1 << i)) printk_debug("GPIO%d ", (i-16)); } if (gpe0_sts & (1 << 14)) printk_debug("USB4 "); if (gpe0_sts & (1 << 13)) printk_debug("PME_B0 "); if (gpe0_sts & (1 << 12)) printk_debug("USB3 "); if (gpe0_sts & (1 << 11)) printk_debug("PME "); if (gpe0_sts & (1 << 10)) printk_debug("EL_SCI/BATLOW "); if (gpe0_sts & (1 << 9)) printk_debug("PCI_EXP "); if (gpe0_sts & (1 << 8)) printk_debug("RI "); if (gpe0_sts & (1 << 7)) printk_debug("SMB_WAK "); if (gpe0_sts & (1 << 6)) printk_debug("TCO_SCI "); if (gpe0_sts & (1 << 5)) printk_debug("AC97 "); if (gpe0_sts & (1 << 4)) printk_debug("USB2 "); if (gpe0_sts & (1 << 3)) printk_debug("USB1 "); if (gpe0_sts & (1 << 2)) printk_debug("HOT_PLUG "); if (gpe0_sts & (1 << 0)) printk_debug("THRM "); printk_debug("\n"); } /** * @brief read and clear TCOx_STS * @return TCOx_STS registers */ static u32 reset_tco_status(void) { u32 tcobase = pmbase + 0x60; u32 reg32; reg32 = inl(tcobase + 0x04); /* set status bits are cleared by writing 1 to them */ outl(reg32 & ~(1<<18), tcobase + 0x04); // Don't clear BOOT_STS before SECOND_TO_STS if (reg32 & (1 << 18)) outl(reg32 & (1<<18), tcobase + 0x04); // clear BOOT_STS return reg32; } static void dump_tco_status(u32 tco_sts) { printk_debug("TCO_STS: "); if (tco_sts & (1 << 20)) printk_debug("SMLINK_SLV "); if (tco_sts & (1 << 18)) printk_debug("BOOT "); if (tco_sts & (1 << 17)) printk_debug("SECOND_TO "); if (tco_sts & (1 << 16)) printk_debug("INTRD_DET "); if (tco_sts & (1 << 12)) printk_debug("DMISERR "); if (tco_sts & (1 << 10)) printk_debug("DMISMI "); if (tco_sts & (1 << 9)) printk_debug("DMISCI "); if (tco_sts & (1 << 8)) printk_debug("BIOSWR "); if (tco_sts & (1 << 7)) printk_debug("NEWCENTURY "); if (tco_sts & (1 << 3)) printk_debug("TIMEOUT "); if (tco_sts & (1 << 2)) printk_debug("TCO_INT "); if (tco_sts & (1 << 1)) printk_debug("SW_TCO "); if (tco_sts & (1 << 0)) printk_debug("NMI2SMI "); printk_debug("\n"); } /* We are using PCIe accesses for now * 1. the chipset can do it * 2. we don't need to worry about how we leave 0xcf8/0xcfc behind */ #include "../../../northbridge/intel/i945/pcie_config.c" int southbridge_io_trap_handler(int smif) { switch (smif) { case 0x32: printk_debug("OS Init\n"); /* gnvs->smif: * On success, the IO Trap Handler returns 0 * On failure, the IO Trap Handler returns a value != 0 */ gnvs->smif = 0; return 1; /* IO trap handled */ } /* Not handled */ return 0; } /** * @brief Set the EOS bit */ void southbridge_smi_set_eos(void) { u8 reg8; reg8 = inb(pmbase + SMI_EN); reg8 |= EOS; outb(reg8, pmbase + SMI_EN); } static void southbridge_smi_sleep(unsigned int node, smm_state_save_area_t *state_save) { u8 reg8; u32 reg32; u8 slp_typ; /* FIXME: the power state on boot should be read from * CMOS or even better from GNVS. Right now it's hard * coded at compile time. */ u8 s5pwr = CONFIG_MAINBOARD_POWER_ON_AFTER_POWER_FAIL; /* First, disable further SMIs */ reg8 = inb(pmbase + SMI_EN); reg8 &= ~SLP_SMI_EN; outb(reg8, pmbase + SMI_EN); /* Figure out SLP_TYP */ reg32 = inl(pmbase + PM1_CNT); printk_spew("SMI#: SLP = 0x%08x\n", reg32); slp_typ = (reg32 >> 10) & 7; /* Next, do the deed. */ switch (slp_typ) { case 0: printk_debug("SMI#: Entering S0 (On)\n"); break; case 1: printk_debug("SMI#: Entering S1 (Assert STPCLK#)\n"); break; case 5: printk_debug("SMI#: Entering S3 (Suspend-To-RAM)\n"); /* Invalidate the cache before going to S3 */ wbinvd(); break; case 6: printk_debug("SMI#: Entering S4 (Suspend-To-Disk)\n"); break; case 7: printk_debug("SMI#: Entering S5 (Soft Power off)\n"); #if 0 /* Set PME_B0_EN before going to S5 */ reg32 = inl(pmbase + GPE0_EN); reg32 |= PME_B0_EN; outl(reg32, pmbase + GPE0_EN); #endif /* Should we keep the power state after a power loss? * In case the setting is "ON" or "OFF" we don't have * to do anything. But if it's "KEEP" we have to switch * to "OFF" before entering S5. */ if (s5pwr == MAINBOARD_POWER_KEEP) { reg8 = pcie_read_config8(PCI_DEV(0, 0x1f, 0), GEN_PMCON_3); reg8 |= 1; pcie_write_config8(PCI_DEV(0, 0x1f, 0), GEN_PMCON_3, reg8); } break; default: printk_debug("SMI#: ERROR: SLP_TYP reserved\n"); break; } /* Write back to the SLP register to cause the originally intended * event again. We need to set BIT13 (SLP_EN) though to make the * sleep happen. */ outl(reg32 | SLP_EN, pmbase + PM1_CNT); /* In most sleep states, the code flow of this function ends at * the line above. However, if we entered sleep state S1 and wake * up again, we will continue to execute code in this function. */ reg32 = inl(pmbase + PM1_CNT); if (reg32 & SCI_EN) { /* The OS is not an ACPI OS, so we set the state to S0 */ reg32 &= ~(SLP_EN | SLP_TYP); outl(reg32, pmbase + PM1_CNT); } } static void southbridge_smi_apmc(unsigned int node, smm_state_save_area_t *state_save) { u32 pmctrl; u8 reg8; /* Emulate B2 register as the FADT / Linux expects it */ reg8 = inb(APM_CNT); switch (reg8) { case CST_CONTROL: /* Calling this function seems to cause * some kind of race condition in Linux * and causes a kernel oops */ printk_debug("C-state control\n"); break; case PST_CONTROL: /* Calling this function seems to cause * some kind of race condition in Linux * and causes a kernel oops */ printk_debug("P-state control\n"); break; case ACPI_DISABLE: pmctrl = inl(pmbase + PM1_CNT); pmctrl &= ~SCI_EN; outl(pmctrl, pmbase + PM1_CNT); printk_debug("SMI#: ACPI disabled.\n"); break; case ACPI_ENABLE: pmctrl = inl(pmbase + PM1_CNT); pmctrl |= SCI_EN; outl(pmctrl, pmbase + PM1_CNT); printk_debug("SMI#: ACPI enabled.\n"); break; case GNVS_UPDATE: if (smm_initialized) { printk_debug("SMI#: SMM structures already initialized!\n"); return; } gnvs = *(global_nvs_t **)0x500; tcg = *(void **)0x504; smi1 = *(void **)0x508; smm_initialized = 1; printk_debug("SMI#: Setting up structures to %p, %p, %p\n", gnvs, tcg, smi1); break; default: printk_debug("SMI#: Unknown function APM_CNT=%02x\n", reg8); } } static void southbridge_smi_pm1(unsigned int node, smm_state_save_area_t *state_save) { u16 pm1_sts; pm1_sts = reset_pm1_status(); dump_pm1_status(pm1_sts); } static void southbridge_smi_gpe0(unsigned int node, smm_state_save_area_t *state_save) { u32 gpe0_sts; gpe0_sts = reset_gpe0_status(); dump_gpe0_status(gpe0_sts); } static void southbridge_smi_gpi(unsigned int node, smm_state_save_area_t *state_save) { u16 reg16; reg16 = inw(pmbase + ALT_GP_SMI_STS); outl(reg16, pmbase + ALT_GP_SMI_STS); reg16 &= inw(pmbase + ALT_GP_SMI_EN); if (reg16) printk_debug("GPI (mask %04x)\n",reg16); } static void southbridge_smi_mc(unsigned int node, smm_state_save_area_t *state_save) { u32 reg32; reg32 = inl(pmbase + SMI_EN); /* Are periodic SMIs enabled? */ if ((reg32 & MCSMI_EN) == 0) return; printk_debug("Microcontroller SMI.\n"); } static void southbridge_smi_tco(unsigned int node, smm_state_save_area_t *state_save) { u32 tco_sts; tco_sts = reset_tco_status(); /* Any TCO event? */ if (!tco_sts) return; if (tco_sts & (1 << 8)) { // BIOSWR u8 bios_cntl; bios_cntl = pcie_read_config16(PCI_DEV(0, 0x1f, 0), 0xdc); if (bios_cntl & 1) { /* BWE is RW, so the SMI was caused by a * write to BWE, not by a write to the BIOS */ /* This is the place where we notice someone * is trying to tinker with the BIOS. We are * trying to be nice and just ignore it. A more * resolute answer would be to power down the * box. */ printk_debug("Switching back to RO\n"); pcie_write_config32(PCI_DEV(0, 0x1f, 0), 0xdc, (bios_cntl & ~1)); } /* No else for now? */ } else if (tco_sts & (1 << 3)) { /* TIMEOUT */ /* Handle TCO timeout */ printk_debug("TCO Timeout.\n"); } else if (!tco_sts) { dump_tco_status(tco_sts); } } static void southbridge_smi_periodic(unsigned int node, smm_state_save_area_t *state_save) { u32 reg32; reg32 = inl(pmbase + SMI_EN); /* Are periodic SMIs enabled? */ if ((reg32 & PERIODIC_EN) == 0) return; printk_debug("Periodic SMI.\n"); } static void southbridge_smi_monitor(unsigned int node, smm_state_save_area_t *state_save) { #define IOTRAP(x) (trap_sts & (1 << x)) u32 trap_sts, trap_cycle; u32 data, mask = 0; int i; trap_sts = RCBA32(0x1e00); // TRSR - Trap Status Register RCBA32(0x1e00) = trap_sts; // Clear trap(s) in TRSR trap_cycle = RCBA32(0x1e10); for (i=16; i<20; i++) { if (trap_cycle & (1 << i)) mask |= (0xff << ((i - 16) << 2)); } /* IOTRAP(3) SMI function call */ if (IOTRAP(3)) { if (gnvs && gnvs->smif) io_trap_handler(gnvs->smif); // call function smif return; } /* IOTRAP(2) currently unused * IOTRAP(1) currently unused */ /* IOTRAP(0) SMIC */ if (IOTRAP(0)) { if (!(trap_cycle & (1 << 24))) { // It's a write printk_debug("SMI1 command\n"); data = RCBA32(0x1e18); data &= mask; // if (smi1) // southbridge_smi_command(data); // return; } // Fall through to debug } printk_debug(" trapped io address = 0x%x\n", trap_cycle & 0xfffc); for (i=0; i < 4; i++) if(IOTRAP(i)) printk_debug(" TRAPĀ = %d\n", i); printk_debug(" AHBE = %x\n", (trap_cycle >> 16) & 0xf); printk_debug(" MASK = 0x%08x\n", mask); printk_debug(" read/write: %s\n", (trap_cycle & (1 << 24)) ? "read" : "write"); if (!(trap_cycle & (1 << 24))) { /* Write Cycle */ data = RCBA32(0x1e18); printk_debug(" iotrap written data = 0x%08x\n", data); } #undef IOTRAP } typedef void (*smi_handler)(unsigned int node, smm_state_save_area_t *state_save); smi_handler southbridge_smi[32] = { NULL, // [0] reserved NULL, // [1] reserved NULL, // [2] BIOS_STS NULL, // [3] LEGACY_USB_STS southbridge_smi_sleep, // [4] SLP_SMI_STS southbridge_smi_apmc, // [5] APM_STS NULL, // [6] SWSMI_TMR_STS NULL, // [7] reserved southbridge_smi_pm1, // [8] PM1_STS southbridge_smi_gpe0, // [9] GPE0_STS southbridge_smi_gpi, // [10] GPI_STS southbridge_smi_mc, // [11] MCSMI_STS NULL, // [12] DEVMON_STS southbridge_smi_tco, // [13] TCO_STS southbridge_smi_periodic, // [14] PERIODIC_STS NULL, // [15] SERIRQ_SMI_STS NULL, // [16] SMBUS_SMI_STS NULL, // [17] LEGACY_USB2_STS NULL, // [18] INTEL_USB2_STS NULL, // [19] reserved NULL, // [20] PCI_EXP_SMI_STS southbridge_smi_monitor, // [21] MONITOR_STS NULL, // [22] reserved NULL, // [23] reserved NULL, // [24] reserved NULL, // [25] EL_SMI_STS NULL, // [26] SPI_STS NULL, // [27] reserved NULL, // [28] reserved NULL, // [29] reserved NULL, // [30] reserved NULL // [31] reserved }; /** * @brief Interrupt handler for SMI# * * @param smm_revision revision of the smm state save map */ void southbridge_smi_handler(unsigned int node, smm_state_save_area_t *state_save) { int i, dump = 0; u32 smi_sts; /* Update global variable pmbase */ pmbase = pcie_read_config16(PCI_DEV(0, 0x1f, 0), 0x40) & 0xfffc; /* We need to clear the SMI status registers, or we won't see what's * happening in the following calls. */ smi_sts = reset_smi_status(); /* Filter all non-enabled SMI events */ // FIXME Double check, this clears MONITOR // smi_sts &= inl(pmbase + SMI_EN); /* Call SMI sub handler for each of the status bits */ for (i = 0; i < 31; i++) { if (smi_sts & (1 << i)) { if (southbridge_smi[i]) southbridge_smi[i](node, state_save); else { printk_debug("SMI_STS[%d] occured, but no " "handler available.\n", i); dump = 1; } } } if(dump) { dump_smi_status(smi_sts); } }