/* * This file is part of the coreboot project. * * Copyright (C) 2008-2009 coresystems GmbH * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; version 2 of * the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, * MA 02110-1301 USA */ #include #include #include #include #include #include #include #include "chip.h" // Future TODO: Move to i82801gx directory #include "../../../northbridge/intel/i945/ich7.h" extern unsigned char smm[]; extern unsigned int smm_len; /* I945 */ #define SMRAM 0x9d #define D_OPEN (1 << 6) #define D_CLS (1 << 5) #define D_LCK (1 << 4) #define G_SMRAME (1 << 3) #define C_BASE_SEG ((0 << 2) | (1 << 1) | (0 << 0)) /* ICH7 */ #define PM1_STS 0x00 #define PM1_EN 0x02 #define PM1_CNT 0x04 #define PM1_TMR 0x08 #define PROC_CNT 0x10 #define LV2 0x14 #define LV3 0x15 #define LV4 0x16 #define PM2_CNT 0x20 // mobile only #define GPE0_STS 0x28 #define GPE0_EN 0x2c #define SMI_EN 0x30 #define EL_SMI_EN (1 << 25) // Intel Quick Resume Technology #define INTEL_USB2_EN (1 << 18) // Intel-Specific USB2 SMI logic #define LEGACY_USB2_EN (1 << 17) // Legacy USB2 SMI logic #define PERIODIC_EN (1 << 14) // SMI on PERIODIC_STS in SMI_STS #define TCO_EN (1 << 13) // Enable TCO Logic (BIOSWE et al) #define MCSMI_EN (1 << 11) // Trap microcontroller range access #define BIOS_RLS (1 << 7) // asserts SCI on bit set #define SWSMI_TMR_EN (1 << 6) // start software smi timer on bit set #define APMC_EN (1 << 5) // Writes to APM_CNT cause SMI# #define SLP_SMI_EN (1 << 4) // Write to SLP_EN in PM1_CNT asserts SMI# #define LEGACY_USB_EN (1 << 3) // Legacy USB circuit SMI logic #define BIOS_EN (1 << 2) // Assert SMI# on setting GBL_RLS bit #define EOS (1 << 1) // End of SMI (deassert SMI#) #define GBL_SMI_EN (1 << 0) // SMI# generation at all? #define SMI_STS 0x34 #define ALT_GP_SMI_EN 0x38 #define ALT_GP_SMI_STS 0x3a #define GPE_CNTL 0x42 #define DEVACT_STS 0x44 #define SS_CNT 0x50 #define C3_RES 0x54 /* While we read PMBASE dynamically in case it changed, let's * initialize it with a sane value */ static u16 pmbase = DEFAULT_PMBASE; /** * @brief read and clear PM1_STS * @return PM1_STS register */ static u16 reset_pm1_status(void) { u16 reg16; reg16 = inw(pmbase + PM1_STS); /* set status bits are cleared by writing 1 to them */ outw(reg16, pmbase + PM1_STS); return reg16; } static void dump_pm1_status(u16 pm1_sts) { printk_debug("PM1_STS: "); if (pm1_sts & (1 << 15)) printk_debug("WAK "); if (pm1_sts & (1 << 14)) printk_debug("PCIEXPWAK "); if (pm1_sts & (1 << 11)) printk_debug("PRBTNOR "); if (pm1_sts & (1 << 10)) printk_debug("RTC "); if (pm1_sts & (1 << 8)) printk_debug("PWRBTN "); if (pm1_sts & (1 << 5)) printk_debug("GBL "); if (pm1_sts & (1 << 4)) printk_debug("BM "); if (pm1_sts & (1 << 0)) printk_debug("TMROF "); printk_debug("\n"); } /** * @brief read and clear SMI_STS * @return SMI_STS register */ static u32 reset_smi_status(void) { u32 reg32; reg32 = inl(pmbase + SMI_STS); /* set status bits are cleared by writing 1 to them */ outl(reg32, pmbase + SMI_STS); return reg32; } static void dump_smi_status(u32 smi_sts) { printk_debug("SMI_STS: "); if (smi_sts & (1 << 26)) printk_debug("SPI "); if (smi_sts & (1 << 25)) printk_debug("EL_SMI "); if (smi_sts & (1 << 21)) printk_debug("MONITOR "); if (smi_sts & (1 << 20)) printk_debug("PCI_EXP_SMI "); if (smi_sts & (1 << 18)) printk_debug("INTEL_USB2 "); if (smi_sts & (1 << 17)) printk_debug("LEGACY_USB2 "); if (smi_sts & (1 << 16)) printk_debug("SMBUS_SMI "); if (smi_sts & (1 << 15)) printk_debug("SERIRQ_SMI "); if (smi_sts & (1 << 14)) printk_debug("PERIODIC "); if (smi_sts & (1 << 13)) printk_debug("TCO "); if (smi_sts & (1 << 12)) printk_debug("DEVMON "); if (smi_sts & (1 << 11)) printk_debug("MCSMI "); if (smi_sts & (1 << 10)) printk_debug("GPI "); if (smi_sts & (1 << 9)) printk_debug("GPE0 "); if (smi_sts & (1 << 8)) printk_debug("PM1 "); if (smi_sts & (1 << 6)) printk_debug("SWSMI_TMR "); if (smi_sts & (1 << 5)) printk_debug("APM "); if (smi_sts & (1 << 4)) printk_debug("SLP_SMI "); if (smi_sts & (1 << 3)) printk_debug("LEGACY_USB "); if (smi_sts & (1 << 2)) printk_debug("BIOS "); printk_debug("\n"); } /** * @brief read and clear GPE0_STS * @return GPE0_STS register */ static u32 reset_gpe0_status(void) { u32 reg32; reg32 = inl(pmbase + GPE0_STS); /* set status bits are cleared by writing 1 to them */ outl(reg32, pmbase + GPE0_STS); return reg32; } static void dump_gpe0_status(u32 gpe0_sts) { int i; printk_debug("GPE0_STS: "); for (i=31; i<= 16; i--) { if (gpe0_sts & (1 << i)) printk_debug("GPIO%d ", (i-16)); } if (gpe0_sts & (1 << 14)) printk_debug("USB4 "); if (gpe0_sts & (1 << 13)) printk_debug("PME_B0 "); if (gpe0_sts & (1 << 12)) printk_debug("USB3 "); if (gpe0_sts & (1 << 11)) printk_debug("PME "); if (gpe0_sts & (1 << 10)) printk_debug("EL_SCI/BATLOW "); if (gpe0_sts & (1 << 9)) printk_debug("PCI_EXP "); if (gpe0_sts & (1 << 8)) printk_debug("RI "); if (gpe0_sts & (1 << 7)) printk_debug("SMB_WAK "); if (gpe0_sts & (1 << 6)) printk_debug("TCO_SCI "); if (gpe0_sts & (1 << 5)) printk_debug("AC97 "); if (gpe0_sts & (1 << 4)) printk_debug("USB2 "); if (gpe0_sts & (1 << 3)) printk_debug("USB1 "); if (gpe0_sts & (1 << 2)) printk_debug("HOT_PLUG "); if (gpe0_sts & (1 << 0)) printk_debug("THRM "); printk_debug("\n"); } /** * @brief read and clear TCOx_STS * @return TCOx_STS registers */ static u32 reset_tco_status(void) { u32 tcobase = pmbase + 0x60; u32 reg32; reg32 = inl(tcobase + 0x04); /* set status bits are cleared by writing 1 to them */ outl(reg32 & ~(1<<18), tcobase + 0x04); // Don't clear BOOT_STS before SECOND_TO_STS if (reg32 & (1 << 18)) outl(reg32 & (1<<18), tcobase + 0x04); // clear BOOT_STS return reg32; } static void dump_tco_status(u32 tco_sts) { printk_debug("TCO_STS: "); if (tco_sts & (1 << 20)) printk_debug("SMLINK_SLV "); if (tco_sts & (1 << 18)) printk_debug("BOOT "); if (tco_sts & (1 << 17)) printk_debug("SECOND_TO "); if (tco_sts & (1 << 16)) printk_debug("INTRD_DET "); if (tco_sts & (1 << 12)) printk_debug("DMISERR "); if (tco_sts & (1 << 10)) printk_debug("DMISMI "); if (tco_sts & (1 << 9)) printk_debug("DMISCI "); if (tco_sts & (1 << 8)) printk_debug("BIOSWR "); if (tco_sts & (1 << 7)) printk_debug("NEWCENTURY "); if (tco_sts & (1 << 3)) printk_debug("TIMEOUT "); if (tco_sts & (1 << 2)) printk_debug("TCO_INT "); if (tco_sts & (1 << 1)) printk_debug("SW_TCO "); if (tco_sts & (1 << 0)) printk_debug("NMI2SMI "); printk_debug("\n"); } /** * @brief Set the EOS bit */ static void smi_set_eos(void) { u8 reg8; reg8 = inb(pmbase + SMI_EN); reg8 |= EOS; outb(reg8, pmbase + SMI_EN); } extern uint8_t smm_relocation_start, smm_relocation_end; void smm_relocate(void) { u32 smi_en; printk_debug("Initializing SMM handler..."); pmbase = pci_read_config16(dev_find_slot(0, PCI_DEVFN(0x1f, 0)), 0x40) & 0xfffc; printk_spew(" ... pmbase = 0x%04x\n", pmbase); smi_en = inl(pmbase + SMI_EN); if (smi_en & APMC_EN) { printk_info("SMI# handler already enabled?\n"); return; } /* copy the SMM relocation code */ memcpy((void *)0x38000, &smm_relocation_start, &smm_relocation_end - &smm_relocation_start); printk_debug("\n"); dump_smi_status(reset_smi_status()); dump_pm1_status(reset_pm1_status()); dump_gpe0_status(reset_gpe0_status()); dump_tco_status(reset_tco_status()); /* Enable SMI generation: * - on TCO events * - on APMC writes (io 0xb2) * - on writes to SLP_EN (sleep states) * - on writes to GBL_RLS (bios commands) * No SMIs: * - on microcontroller writes (io 0x62/0x66) */ outl(smi_en | (TCO_EN | APMC_EN | SLP_SMI_EN | BIOS_EN | EOS | GBL_SMI_EN), pmbase + SMI_EN); /** * There are several methods of raising a controlled SMI# via * software, among them: * - Writes to io 0xb2 (APMC) * - Writes to the Local Apic ICR with Delivery mode SMI. * * Using the local apic is a bit more tricky. According to * AMD Family 11 Processor BKDG no destination shorthand must be * used. * The whole SMM initialization is quite a bit hardware specific, so * I'm not too worried about the better of the methods at the moment */ /* raise an SMI interrupt */ printk_spew(" ... raise SMI#\n"); outb(0x00, 0xb2); } void smm_install(void) { /* enable the SMM memory window */ pci_write_config8(dev_find_slot(0, PCI_DEVFN(0, 0)), SMRAM, D_OPEN | G_SMRAME | C_BASE_SEG); /* copy the real SMM handler */ memcpy((void *)0xa0000, smm, smm_len); wbinvd(); /* close the SMM memory window and enable normal SMM */ pci_write_config8(dev_find_slot(0, PCI_DEVFN(0, 0)), SMRAM, G_SMRAME | C_BASE_SEG); } void smm_init(void) { smm_relocate(); smm_install(); } void smm_lock(void) { /* LOCK the SMM memory window and enable normal SMM. * After running this function, only a full reset can * make the SMM registers writable again. */ printk_debug("Locking SMM.\n"); pci_write_config8(dev_find_slot(0, PCI_DEVFN(0, 0)), SMRAM, D_LCK | G_SMRAME | C_BASE_SEG); }