/* SPDX-License-Identifier: GPL-2.0-or-later */ #define __SIMPLE_DEVICE__ /* This file is derived from the flashrom project. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "spi.h" #define HSFC_FCYCLE_OFF 1 /* 1-2: FLASH Cycle */ #define HSFC_FCYCLE (0x3 << HSFC_FCYCLE_OFF) #define HSFC_FDBC_OFF 8 /* 8-13: Flash Data Byte Count */ #define HSFC_FDBC (0x3f << HSFC_FDBC_OFF) static int spi_is_multichip(void); static void spi_set_smm_only_flashing(bool enable); struct ich7_spi_regs { uint16_t spis; uint16_t spic; uint32_t spia; uint64_t spid[8]; uint64_t _pad; uint32_t bbar; uint16_t preop; uint16_t optype; uint8_t opmenu[8]; uint32_t pbr[3]; } __packed; struct ich9_spi_regs { uint32_t bfpr; uint16_t hsfs; uint16_t hsfc; uint32_t faddr; uint32_t _reserved0; uint32_t fdata[16]; uint32_t frap; uint32_t freg[5]; uint32_t _reserved1[3]; uint32_t pr[5]; uint32_t _reserved2[2]; uint8_t ssfs; uint8_t ssfc[3]; uint16_t preop; uint16_t optype; uint8_t opmenu[8]; uint32_t bbar; uint8_t _reserved3[12]; uint32_t fdoc; uint32_t fdod; uint8_t _reserved4[8]; uint32_t afc; uint32_t lvscc; uint32_t uvscc; uint8_t _reserved5[4]; uint32_t fpb; uint8_t _reserved6[28]; uint32_t srdl; uint32_t srdc; uint32_t srd; } __packed; struct ich_spi_controller { int locked; uint32_t flmap0; uint32_t flcomp; uint32_t hsfs; union { struct ich9_spi_regs *ich9_spi; struct ich7_spi_regs *ich7_spi; }; uint8_t *opmenu; int menubytes; uint16_t *preop; uint16_t *optype; uint32_t *addr; uint8_t *data; unsigned int databytes; uint8_t *status; uint16_t *control; uint32_t *bbar; uint32_t *fpr; uint8_t fpr_max; }; static struct ich_spi_controller cntlr; enum { SPIS_SCIP = 0x0001, SPIS_GRANT = 0x0002, SPIS_CDS = 0x0004, SPIS_FCERR = 0x0008, SSFS_AEL = 0x0010, SPIS_LOCK = 0x8000, SPIS_RESERVED_MASK = 0x7ff0, SSFS_RESERVED_MASK = 0x7fe2 }; enum { SPIC_SCGO = 0x000002, SPIC_ACS = 0x000004, SPIC_SPOP = 0x000008, SPIC_DBC = 0x003f00, SPIC_DS = 0x004000, SPIC_SME = 0x008000, SSFC_SCF_MASK = 0x070000, SSFC_RESERVED = 0xf80000 }; enum { HSFS_FDONE = 0x0001, HSFS_FCERR = 0x0002, HSFS_AEL = 0x0004, HSFS_BERASE_MASK = 0x0018, HSFS_BERASE_SHIFT = 3, HSFS_SCIP = 0x0020, HSFS_FDOPSS = 0x2000, HSFS_FDV = 0x4000, HSFS_FLOCKDN = 0x8000 }; enum { HSFC_FGO = 0x0001, HSFC_FCYCLE_MASK = 0x0006, HSFC_FCYCLE_SHIFT = 1, HSFC_FDBC_MASK = 0x3f00, HSFC_FDBC_SHIFT = 8, HSFC_FSMIE = 0x8000 }; enum { SPI_OPCODE_TYPE_READ_NO_ADDRESS = 0, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS = 1, SPI_OPCODE_TYPE_READ_WITH_ADDRESS = 2, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS = 3 }; #if CONFIG(DEBUG_SPI_FLASH) static u8 readb_(const void *addr) { u8 v = read8(addr); printk(BIOS_DEBUG, "read %2.2x from %4.4lx\n", v, ((uintptr_t)addr & 0xffff) - 0xf020); return v; } static u16 readw_(const void *addr) { u16 v = read16(addr); printk(BIOS_DEBUG, "read %4.4x from %4.4lx\n", v, ((uintptr_t)addr & 0xffff) - 0xf020); return v; } static u32 readl_(const void *addr) { u32 v = read32(addr); printk(BIOS_DEBUG, "read %8.8x from %4.4lx\n", v, ((uintptr_t)addr & 0xffff) - 0xf020); return v; } static void writeb_(u8 b, void *addr) { write8(addr, b); printk(BIOS_DEBUG, "wrote %2.2x to %4.4lx\n", b, ((uintptr_t)addr & 0xffff) - 0xf020); } static void writew_(u16 b, void *addr) { write16(addr, b); printk(BIOS_DEBUG, "wrote %4.4x to %4.4lx\n", b, ((uintptr_t)addr & 0xffff) - 0xf020); } static void writel_(u32 b, void *addr) { write32(addr, b); printk(BIOS_DEBUG, "wrote %8.8x to %4.4lx\n", b, ((uintptr_t)addr & 0xffff) - 0xf020); } #else /* CONFIG_DEBUG_SPI_FLASH ^^^ enabled vvv NOT enabled */ #define readb_(a) read8(a) #define readw_(a) read16(a) #define readl_(a) read32(a) #define writeb_(val, addr) write8(addr, val) #define writew_(val, addr) write16(addr, val) #define writel_(val, addr) write32(addr, val) #endif /* CONFIG_DEBUG_SPI_FLASH ^^^ NOT enabled */ static void write_reg(const void *value, void *dest, uint32_t size) { const uint8_t *bvalue = value; uint8_t *bdest = dest; while (size >= 4) { writel_(*(const uint32_t *)bvalue, bdest); bdest += 4; bvalue += 4; size -= 4; } while (size) { writeb_(*bvalue, bdest); bdest++; bvalue++; size--; } } static void read_reg(const void *src, void *value, uint32_t size) { const uint8_t *bsrc = src; uint8_t *bvalue = value; while (size >= 4) { *(uint32_t *)bvalue = readl_(bsrc); bsrc += 4; bvalue += 4; size -= 4; } while (size) { *bvalue = readb_(bsrc); bsrc++; bvalue++; size--; } } static void ich_set_bbar(uint32_t minaddr) { const uint32_t bbar_mask = 0x00ffff00; uint32_t ichspi_bbar; minaddr &= bbar_mask; ichspi_bbar = readl_(cntlr.bbar) & ~bbar_mask; ichspi_bbar |= minaddr; writel_(ichspi_bbar, cntlr.bbar); } #if CONFIG(SOUTHBRIDGE_INTEL_I82801GX) #define MENU_BYTES member_size(struct ich7_spi_regs, opmenu) #else #define MENU_BYTES member_size(struct ich9_spi_regs, opmenu) #endif #define RCBA 0xf0 #define SBASE 0x54 static void *get_spi_bar(pci_devfn_t dev) { uintptr_t rcba; /* Root Complex Register Block */ uintptr_t sbase; if (CONFIG(SOUTHBRIDGE_INTEL_I82801GX)) { rcba = pci_read_config32(dev, RCBA); return (void *)((rcba & 0xffffc000) + 0x3020); } if (CONFIG(SOUTHBRIDGE_INTEL_COMMON_SPI_SILVERMONT)) { sbase = pci_read_config32(dev, SBASE); sbase &= ~0x1ff; return (void *)sbase; } if (CONFIG(SOUTHBRIDGE_INTEL_COMMON_SPI_ICH9)) { rcba = pci_read_config32(dev, RCBA); return (void *)((rcba & 0xffffc000) + 0x3800); } } void spi_init(void) { struct ich9_spi_regs *ich9_spi; struct ich7_spi_regs *ich7_spi; uint16_t hsfs; pci_devfn_t dev = PCI_DEV(0, 31, 0); if (CONFIG(SOUTHBRIDGE_INTEL_I82801GX)) { ich7_spi = get_spi_bar(dev); cntlr.ich7_spi = ich7_spi; cntlr.opmenu = ich7_spi->opmenu; cntlr.menubytes = sizeof(ich7_spi->opmenu); cntlr.optype = &ich7_spi->optype; cntlr.addr = &ich7_spi->spia; cntlr.data = (uint8_t *)ich7_spi->spid; cntlr.databytes = sizeof(ich7_spi->spid); cntlr.status = (uint8_t *)&ich7_spi->spis; cntlr.control = &ich7_spi->spic; cntlr.bbar = &ich7_spi->bbar; cntlr.preop = &ich7_spi->preop; cntlr.fpr = &ich7_spi->pbr[0]; cntlr.fpr_max = 3; } else { ich9_spi = get_spi_bar(dev); cntlr.ich9_spi = ich9_spi; hsfs = readw_(&ich9_spi->hsfs); cntlr.hsfs = hsfs; cntlr.opmenu = ich9_spi->opmenu; cntlr.menubytes = sizeof(ich9_spi->opmenu); cntlr.optype = &ich9_spi->optype; cntlr.addr = &ich9_spi->faddr; cntlr.data = (uint8_t *)ich9_spi->fdata; cntlr.databytes = sizeof(ich9_spi->fdata); cntlr.status = &ich9_spi->ssfs; cntlr.control = (uint16_t *)ich9_spi->ssfc; cntlr.bbar = &ich9_spi->bbar; cntlr.preop = &ich9_spi->preop; cntlr.fpr = &ich9_spi->pr[0]; cntlr.fpr_max = 5; if (cntlr.hsfs & HSFS_FDV) { writel_(4, &ich9_spi->fdoc); cntlr.flmap0 = readl_(&ich9_spi->fdod); writel_(0x1000, &ich9_spi->fdoc); cntlr.flcomp = readl_(&ich9_spi->fdod); } } ich_set_bbar(0); /* Disable the BIOS write protect so write commands are allowed. */ spi_set_smm_only_flashing(false); } static int spi_locked(void) { if (CONFIG(SOUTHBRIDGE_INTEL_I82801GX)) { return !!(readw_(&cntlr.ich7_spi->spis) & HSFS_FLOCKDN); } else { return !!(readw_(&cntlr.ich9_spi->hsfs) & HSFS_FLOCKDN); } } static void spi_init_cb(void *unused) { spi_init(); } BOOT_STATE_INIT_ENTRY(BS_DEV_INIT, BS_ON_ENTRY, spi_init_cb, NULL); typedef struct spi_transaction { const uint8_t *out; uint32_t bytesout; uint8_t *in; uint32_t bytesin; uint8_t type; uint8_t opcode; uint32_t offset; } spi_transaction; static inline void spi_use_out(spi_transaction *trans, unsigned int bytes) { trans->out += bytes; trans->bytesout -= bytes; } static inline void spi_use_in(spi_transaction *trans, unsigned int bytes) { trans->in += bytes; trans->bytesin -= bytes; } static void spi_setup_type(spi_transaction *trans) { trans->type = 0xFF; /* Try to guess spi type from read/write sizes. */ if (trans->bytesin == 0) { if (trans->bytesout > 4) /* * If bytesin = 0 and bytesout > 4, we presume this is * a write data operation, which is accompanied by an * address. */ trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS; else trans->type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS; return; } if (trans->bytesout == 1) { /* and bytesin is > 0 */ trans->type = SPI_OPCODE_TYPE_READ_NO_ADDRESS; return; } if (trans->bytesout == 4) { /* and bytesin is > 0 */ trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS; } /* Fast read command is called with 5 bytes instead of 4 */ if (trans->out[0] == SPI_OPCODE_FAST_READ && trans->bytesout == 5) { trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS; --trans->bytesout; } } static int spi_setup_opcode(spi_transaction *trans) { uint16_t optypes; uint8_t opmenu[MENU_BYTES]; trans->opcode = trans->out[0]; spi_use_out(trans, 1); if (!spi_locked()) { /* The lock is off, so just use index 0. */ writeb_(trans->opcode, cntlr.opmenu); optypes = readw_(cntlr.optype); optypes = (optypes & 0xfffc) | (trans->type & 0x3); writew_(optypes, cntlr.optype); return 0; } /* The lock is on. See if what we need is on the menu. */ uint8_t optype; uint16_t opcode_index; /* Write Enable is handled as atomic prefix */ if (trans->opcode == SPI_OPCODE_WREN) return 0; read_reg(cntlr.opmenu, opmenu, sizeof(opmenu)); for (opcode_index = 0; opcode_index < ARRAY_SIZE(opmenu); opcode_index++) { if (opmenu[opcode_index] == trans->opcode) break; } if (opcode_index == ARRAY_SIZE(opmenu)) { printk(BIOS_DEBUG, "ICH SPI: Opcode %x not found\n", trans->opcode); return -1; } optypes = readw_(cntlr.optype); optype = (optypes >> (opcode_index * 2)) & 0x3; if (trans->type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS && optype == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS && trans->bytesout >= 3) { /* We guessed wrong earlier. Fix it up. */ trans->type = optype; } if (optype != trans->type) { printk(BIOS_DEBUG, "ICH SPI: Transaction doesn't fit type %d\n", optype); return -1; } return opcode_index; } static int spi_setup_offset(spi_transaction *trans) { /* Separate the SPI address and data. */ switch (trans->type) { case SPI_OPCODE_TYPE_READ_NO_ADDRESS: case SPI_OPCODE_TYPE_WRITE_NO_ADDRESS: return 0; case SPI_OPCODE_TYPE_READ_WITH_ADDRESS: case SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS: trans->offset = ((uint32_t)trans->out[0] << 16) | ((uint32_t)trans->out[1] << 8) | ((uint32_t)trans->out[2] << 0); spi_use_out(trans, 3); return 1; default: printk(BIOS_DEBUG, "Unrecognized SPI transaction type %#x\n", trans->type); return -1; } } /* * Wait for up to 6s til status register bit(s) turn 1 (in case wait_til_set * below is True) or 0. In case the wait was for the bit(s) to set - write * those bits back, which would cause resetting them. * * Return the last read status value on success or -1 on failure. */ static int ich_status_poll(u16 bitmask, int wait_til_set) { int timeout = 600000; /* This will result in 6 seconds */ u16 status = 0; while (timeout--) { status = readw_(cntlr.status); if (wait_til_set ^ ((status & bitmask) == 0)) { if (wait_til_set) writew_((status & bitmask), cntlr.status); return status; } udelay(10); } printk(BIOS_DEBUG, "ICH SPI: SCIP timeout, read %x, bitmask %x\n", status, bitmask); return -1; } static int spi_is_multichip(void) { if (!(cntlr.hsfs & HSFS_FDV)) return 0; return !!((cntlr.flmap0 >> 8) & 3); } static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout, size_t bytesout, void *din, size_t bytesin) { uint16_t control; int16_t opcode_index; int with_address; int status; spi_transaction trans = { dout, bytesout, din, bytesin, 0xff, 0xff, 0 }; /* There has to always at least be an opcode. */ if (!bytesout || !dout) { printk(BIOS_DEBUG, "ICH SPI: No opcode for transfer\n"); return -1; } /* Make sure if we read something we have a place to put it. */ if (bytesin != 0 && !din) { printk(BIOS_DEBUG, "ICH SPI: Read but no target buffer\n"); return -1; } if (ich_status_poll(SPIS_SCIP, 0) == -1) return -1; writew_(SPIS_CDS | SPIS_FCERR, cntlr.status); spi_setup_type(&trans); if ((opcode_index = spi_setup_opcode(&trans)) < 0) return -1; if ((with_address = spi_setup_offset(&trans)) < 0) return -1; if (trans.opcode == SPI_OPCODE_WREN) { /* * Treat Write Enable as Atomic Pre-Op if possible * in order to prevent the Management Engine from * issuing a transaction between WREN and DATA. */ if (!spi_locked()) writew_(trans.opcode, cntlr.preop); return 0; } /* Preset control fields */ control = SPIC_SCGO | ((opcode_index & 0x07) << 4); /* Issue atomic preop cycle if needed */ if (readw_(cntlr.preop)) control |= SPIC_ACS; if (!trans.bytesout && !trans.bytesin) { /* SPI addresses are 24 bit only */ if (with_address) writel_(trans.offset & 0x00FFFFFF, cntlr.addr); /* * This is a 'no data' command (like Write Enable), its * bitesout size was 1, decremented to zero while executing * spi_setup_opcode() above. Tell the chip to send the * command. */ writew_(control, cntlr.control); /* wait for the result */ status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1); if (status == -1) return -1; if (status & SPIS_FCERR) { printk(BIOS_DEBUG, "ICH SPI: Command transaction error\n"); return -1; } goto spi_xfer_exit; } /* * Check if this is a write command attempting to transfer more bytes * than the controller can handle. Iterations for writes are not * supported here because each SPI write command needs to be preceded * and followed by other SPI commands, and this sequence is controlled * by the SPI chip driver. */ if (trans.bytesout > cntlr.databytes) { printk(BIOS_DEBUG, "ICH SPI: Too much to write. Does your SPI chip driver use" " spi_crop_chunk()?\n"); return -1; } /* * Read or write up to databytes bytes at a time until everything has * been sent. */ while (trans.bytesout || trans.bytesin) { uint32_t data_length; /* SPI addresses are 24 bit only */ writel_(trans.offset & 0x00FFFFFF, cntlr.addr); if (trans.bytesout) data_length = MIN(trans.bytesout, cntlr.databytes); else data_length = MIN(trans.bytesin, cntlr.databytes); /* Program data into FDATA0 to N */ if (trans.bytesout) { write_reg(trans.out, cntlr.data, data_length); spi_use_out(&trans, data_length); if (with_address) trans.offset += data_length; } /* Add proper control fields' values */ control &= ~((cntlr.databytes - 1) << 8); control |= SPIC_DS; control |= (data_length - 1) << 8; /* write it */ writew_(control, cntlr.control); /* Wait for Cycle Done Status or Flash Cycle Error. */ status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1); if (status == -1) return -1; if (status & SPIS_FCERR) { printk(BIOS_DEBUG, "ICH SPI: Data transaction error\n"); return -1; } if (trans.bytesin) { read_reg(cntlr.data, trans.in, data_length); spi_use_in(&trans, data_length); if (with_address) trans.offset += data_length; } } spi_xfer_exit: /* Clear atomic preop now that xfer is done */ writew_(0, cntlr.preop); return 0; } /* Sets FLA in FADDR to (addr & 0x01FFFFFF) without touching other bits. */ static void ich_hwseq_set_addr(uint32_t addr) { uint32_t addr_old = readl_(&cntlr.ich9_spi->faddr) & ~0x01FFFFFF; writel_((addr & 0x01FFFFFF) | addr_old, &cntlr.ich9_spi->faddr); } /* Polls for Cycle Done Status, Flash Cycle Error or timeout in 8 us intervals. Resets all error flags in HSFS. Returns 0 if the cycle completes successfully without errors within timeout us, 1 on errors. */ static int ich_hwseq_wait_for_cycle_complete(unsigned int timeout, unsigned int len) { uint16_t hsfs; uint32_t addr; timeout /= 8; /* scale timeout duration to counter */ while ((((hsfs = readw_(&cntlr.ich9_spi->hsfs)) & (HSFS_FDONE | HSFS_FCERR)) == 0) && --timeout) { udelay(8); } writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs); if (!timeout) { uint16_t hsfc; addr = readl_(&cntlr.ich9_spi->faddr) & 0x01FFFFFF; hsfc = readw_(&cntlr.ich9_spi->hsfc); printk(BIOS_ERR, "Transaction timeout between offset 0x%08x and " "0x%08x (= 0x%08x + %d) HSFC=%x HSFS=%x!\n", addr, addr + len - 1, addr, len - 1, hsfc, hsfs); return 1; } if (hsfs & HSFS_FCERR) { uint16_t hsfc; addr = readl_(&cntlr.ich9_spi->faddr) & 0x01FFFFFF; hsfc = readw_(&cntlr.ich9_spi->hsfc); printk(BIOS_ERR, "Transaction error between offset 0x%08x and " "0x%08x (= 0x%08x + %d) HSFC=%x HSFS=%x!\n", addr, addr + len - 1, addr, len - 1, hsfc, hsfs); return 1; } return 0; } static int ich_hwseq_erase(const struct spi_flash *flash, u32 offset, size_t len) { u32 start, end, erase_size; int ret; uint16_t hsfc; unsigned int timeout = 1000 * USECS_PER_MSEC; /* 1 second timeout */ erase_size = flash->sector_size; if (offset % erase_size || len % erase_size) { printk(BIOS_ERR, "SF: Erase offset/length not multiple of erase size\n"); return -1; } ret = spi_claim_bus(&flash->spi); if (ret) { printk(BIOS_ERR, "SF: Unable to claim SPI bus\n"); return ret; } start = offset; end = start + len; while (offset < end) { /* make sure FDONE, FCERR, AEL are cleared by writing 1 to them */ writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs); ich_hwseq_set_addr(offset); offset += erase_size; hsfc = readw_(&cntlr.ich9_spi->hsfc); hsfc &= ~HSFC_FCYCLE; /* clear operation */ hsfc |= (0x3 << HSFC_FCYCLE_OFF); /* set erase operation */ hsfc |= HSFC_FGO; /* start */ writew_(hsfc, &cntlr.ich9_spi->hsfc); if (ich_hwseq_wait_for_cycle_complete(timeout, len)) { printk(BIOS_ERR, "SF: Erase failed at %x\n", offset - erase_size); ret = -1; goto out; } } printk(BIOS_DEBUG, "SF: Successfully erased %zu bytes @ %#x\n", len, start); out: spi_release_bus(&flash->spi); return ret; } static void ich_read_data(uint8_t *data, int len) { int i; uint32_t temp32 = 0; for (i = 0; i < len; i++) { if ((i % 4) == 0) temp32 = readl_(cntlr.data + i); data[i] = (temp32 >> ((i % 4) * 8)) & 0xff; } } static int ich_hwseq_read(const struct spi_flash *flash, u32 addr, size_t len, void *buf) { uint16_t hsfc; uint16_t timeout = 100 * 60; uint8_t block_len; if (addr + len > flash->size) { printk(BIOS_ERR, "Attempt to read %x-%x which is out of chip\n", (unsigned int)addr, (unsigned int)addr+(unsigned int)len); return -1; } /* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */ writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs); while (len > 0) { block_len = MIN(len, cntlr.databytes); if (block_len > (~addr & 0xff)) block_len = (~addr & 0xff) + 1; ich_hwseq_set_addr(addr); hsfc = readw_(&cntlr.ich9_spi->hsfc); hsfc &= ~HSFC_FCYCLE; /* set read operation */ hsfc &= ~HSFC_FDBC; /* clear byte count */ /* set byte count */ hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC); hsfc |= HSFC_FGO; /* start */ writew_(hsfc, &cntlr.ich9_spi->hsfc); if (ich_hwseq_wait_for_cycle_complete(timeout, block_len)) return 1; ich_read_data(buf, block_len); addr += block_len; buf += block_len; len -= block_len; } return 0; } /* Fill len bytes from the data array into the fdata/spid registers. * * Note that using len > flash->pgm->spi.max_data_write will trash the registers * following the data registers. */ static void ich_fill_data(const uint8_t *data, int len) { uint32_t temp32 = 0; int i; if (len <= 0) return; for (i = 0; i < len; i++) { if ((i % 4) == 0) temp32 = 0; temp32 |= ((uint32_t)data[i]) << ((i % 4) * 8); if ((i % 4) == 3) /* 32 bits are full, write them to regs. */ writel_(temp32, cntlr.data + (i - (i % 4))); } i--; if ((i % 4) != 3) /* Write remaining data to regs. */ writel_(temp32, cntlr.data + (i - (i % 4))); } static int ich_hwseq_write(const struct spi_flash *flash, u32 addr, size_t len, const void *buf) { uint16_t hsfc; uint16_t timeout = 100 * 60; uint8_t block_len; uint32_t start = addr; if (addr + len > flash->size) { printk(BIOS_ERR, "Attempt to write 0x%x-0x%x which is out of chip\n", (unsigned int)addr, (unsigned int)(addr+len)); return -1; } /* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */ writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs); while (len > 0) { block_len = MIN(len, cntlr.databytes); if (block_len > (~addr & 0xff)) block_len = (~addr & 0xff) + 1; ich_hwseq_set_addr(addr); ich_fill_data(buf, block_len); hsfc = readw_(&cntlr.ich9_spi->hsfc); hsfc &= ~HSFC_FCYCLE; /* clear operation */ hsfc |= (0x2 << HSFC_FCYCLE_OFF); /* set write operation */ hsfc &= ~HSFC_FDBC; /* clear byte count */ /* set byte count */ hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC); hsfc |= HSFC_FGO; /* start */ writew_(hsfc, &cntlr.ich9_spi->hsfc); if (ich_hwseq_wait_for_cycle_complete(timeout, block_len)) { printk(BIOS_ERR, "SF: write failure at %x\n", addr); return -1; } addr += block_len; buf += block_len; len -= block_len; } printk(BIOS_DEBUG, "SF: Successfully written %u bytes @ %#x\n", (unsigned int)(addr - start), start); return 0; } static const struct spi_flash_ops spi_flash_ops = { .read = ich_hwseq_read, .write = ich_hwseq_write, .erase = ich_hwseq_erase, }; static int spi_flash_programmer_probe(const struct spi_slave *spi, struct spi_flash *flash) { if (CONFIG(SOUTHBRIDGE_INTEL_I82801GX)) return spi_flash_generic_probe(spi, flash); /* Try generic probing first if spi_is_multichip returns 0. */ if (!spi_is_multichip() && !spi_flash_generic_probe(spi, flash)) return 0; memcpy(&flash->spi, spi, sizeof(*spi)); ich_hwseq_set_addr(0); switch ((cntlr.hsfs >> 3) & 3) { case 0: flash->sector_size = 256; break; case 1: flash->sector_size = 4096; break; case 2: flash->sector_size = 8192; break; case 3: flash->sector_size = 65536; break; } flash->size = 1 << (19 + (cntlr.flcomp & 7)); flash->ops = &spi_flash_ops; if ((cntlr.hsfs & HSFS_FDV) && ((cntlr.flmap0 >> 8) & 3)) flash->size += 1 << (19 + ((cntlr.flcomp >> 3) & 7)); printk(BIOS_DEBUG, "flash size 0x%x bytes\n", flash->size); return 0; } static int xfer_vectors(const struct spi_slave *slave, struct spi_op vectors[], size_t count) { return spi_flash_vector_helper(slave, vectors, count, spi_ctrlr_xfer); } #define SPI_FPR_SHIFT 12 #define ICH7_SPI_FPR_MASK 0xfff #define ICH9_SPI_FPR_MASK 0x1fff #define SPI_FPR_BASE_SHIFT 0 #define ICH7_SPI_FPR_LIMIT_SHIFT 12 #define ICH9_SPI_FPR_LIMIT_SHIFT 16 #define ICH9_SPI_FPR_RPE (1 << 15) /* Read Protect */ #define SPI_FPR_WPE (1 << 31) /* Write Protect */ static u32 spi_fpr(u32 base, u32 limit) { u32 ret; u32 mask, limit_shift; if (CONFIG(SOUTHBRIDGE_INTEL_I82801GX)) { mask = ICH7_SPI_FPR_MASK; limit_shift = ICH7_SPI_FPR_LIMIT_SHIFT; } else { mask = ICH9_SPI_FPR_MASK; limit_shift = ICH9_SPI_FPR_LIMIT_SHIFT; } ret = ((limit >> SPI_FPR_SHIFT) & mask) << limit_shift; ret |= ((base >> SPI_FPR_SHIFT) & mask) << SPI_FPR_BASE_SHIFT; return ret; } /* * Protect range of SPI flash defined by [start, start+size-1] using Flash * Protected Range (FPR) register if available. * Returns 0 on success, -1 on failure of programming fpr registers. */ static int spi_flash_protect(const struct spi_flash *flash, const struct region *region, const enum ctrlr_prot_type type) { u32 start = region_offset(region); u32 end = start + region_sz(region) - 1; u32 reg; u32 protect_mask = 0; int fpr; uint32_t *fpr_base; fpr_base = cntlr.fpr; /* Find first empty FPR */ for (fpr = 0; fpr < cntlr.fpr_max; fpr++) { reg = read32(&fpr_base[fpr]); if (reg == 0) break; } if (fpr == cntlr.fpr_max) { printk(BIOS_ERR, "No SPI FPR free!\n"); return -1; } switch (type) { case WRITE_PROTECT: protect_mask |= SPI_FPR_WPE; break; case READ_PROTECT: if (CONFIG(SOUTHBRIDGE_INTEL_I82801GX)) return -1; protect_mask |= ICH9_SPI_FPR_RPE; break; case READ_WRITE_PROTECT: if (CONFIG(SOUTHBRIDGE_INTEL_I82801GX)) return -1; protect_mask |= (ICH9_SPI_FPR_RPE | SPI_FPR_WPE); break; default: printk(BIOS_ERR, "Seeking invalid protection!\n"); return -1; } /* Set protected range base and limit */ reg = spi_fpr(start, end) | protect_mask; /* Set the FPR register and verify it is protected */ write32(&fpr_base[fpr], reg); if (reg != read32(&fpr_base[fpr])) { printk(BIOS_ERR, "Unable to set SPI FPR %d\n", fpr); return -1; } printk(BIOS_INFO, "%s: FPR %d is enabled for range 0x%08x-0x%08x\n", __func__, fpr, start, end); return 0; } void spi_finalize_ops(void) { u16 spi_opprefix; u16 optype = 0; struct intel_swseq_spi_config spi_config_default = { {0x06, 0x50}, /* OPPREFIXES: EWSR and WREN */ { /* OPCODE and OPTYPE */ {0x01, WRITE_NO_ADDR}, /* WRSR: Write Status Register */ {0x02, WRITE_WITH_ADDR}, /* BYPR: Byte Program */ {0x03, READ_WITH_ADDR}, /* READ: Read Data */ {0x05, READ_NO_ADDR}, /* RDSR: Read Status Register */ {0x20, WRITE_WITH_ADDR}, /* SE20: Sector Erase 0x20 */ {0x9f, READ_NO_ADDR}, /* RDID: Read ID */ {0xd8, WRITE_WITH_ADDR}, /* BED8: Block Erase 0xd8 */ {0x0b, READ_WITH_ADDR}, /* FAST: Fast Read */ } }; struct intel_swseq_spi_config spi_config_aai_write = { {0x06, 0x50}, /* OPPREFIXES: EWSR and WREN */ { /* OPCODE and OPTYPE */ {0x01, WRITE_NO_ADDR}, /* WRSR: Write Status Register */ {0x02, WRITE_WITH_ADDR}, /* BYPR: Byte Program */ {0x03, READ_WITH_ADDR}, /* READ: Read Data */ {0x05, READ_NO_ADDR}, /* RDSR: Read Status Register */ {0x20, WRITE_WITH_ADDR}, /* SE20: Sector Erase 0x20 */ {0x9f, READ_NO_ADDR}, /* RDID: Read ID */ {0xad, WRITE_NO_ADDR}, /* Auto Address Increment Word Program */ {0x04, WRITE_NO_ADDR} /* Write Disable */ } }; const struct spi_flash *flash = boot_device_spi_flash(); struct intel_swseq_spi_config *spi_config = &spi_config_default; int i; /* * Some older SST SPI flashes support AAI write but use 0xaf opcde for * that. Flashrom uses the byte program opcode to write those flashes, * so this configuration is fine too. SST25VF064C (id = 0x4b) is an * exception. */ if (flash && flash->vendor == VENDOR_ID_SST && (flash->model & 0x00ff) != 0x4b) spi_config = &spi_config_aai_write; if (spi_locked()) return; intel_southbridge_override_spi(spi_config); spi_opprefix = spi_config->opprefixes[0] | (spi_config->opprefixes[1] << 8); writew_(spi_opprefix, cntlr.preop); for (i = 0; i < ARRAY_SIZE(spi_config->ops); i++) { optype |= (spi_config->ops[i].type & 3) << (i * 2); writeb_(spi_config->ops[i].op, &cntlr.opmenu[i]); } writew_(optype, cntlr.optype); spi_set_smm_only_flashing(CONFIG(BOOTMEDIA_SMM_BWP)); } __weak void intel_southbridge_override_spi(struct intel_swseq_spi_config *spi_config) { } #define BIOS_CNTL 0xdc #define BIOS_CNTL_BIOSWE (1 << 0) #define BIOS_CNTL_BLE (1 << 1) #define BIOS_CNTL_SMM_BWP (1 << 5) static void spi_set_smm_only_flashing(bool enable) { if (!(CONFIG(SOUTHBRIDGE_INTEL_I82801GX) || CONFIG(SOUTHBRIDGE_INTEL_COMMON_SPI_ICH9))) return; const pci_devfn_t dev = PCI_DEV(0, 31, 0); uint8_t bios_cntl = pci_read_config8(dev, BIOS_CNTL); if (enable) { bios_cntl &= ~BIOS_CNTL_BIOSWE; bios_cntl |= BIOS_CNTL_BLE | BIOS_CNTL_SMM_BWP; } else { bios_cntl &= ~(BIOS_CNTL_BLE | BIOS_CNTL_SMM_BWP); bios_cntl |= BIOS_CNTL_BIOSWE; } pci_write_config8(dev, BIOS_CNTL, bios_cntl); } static const struct spi_ctrlr spi_ctrlr = { .xfer_vector = xfer_vectors, .max_xfer_size = member_size(struct ich9_spi_regs, fdata), .flash_probe = spi_flash_programmer_probe, .flash_protect = spi_flash_protect, }; const struct spi_ctrlr_buses spi_ctrlr_bus_map[] = { { .ctrlr = &spi_ctrlr, .bus_start = 0, .bus_end = 0, }, }; const size_t spi_ctrlr_bus_map_count = ARRAY_SIZE(spi_ctrlr_bus_map);