/* * This file is part of the coreboot project. * * Copyright (C) 2010 Advanced Micro Devices, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* * for rs780 internal graphics device * device id of internal grphics: * RS780: 0x9610 * RS780C: 0x9611 * RS780M: 0x9612 * RS780MC:0x9613 * RS780E: 0x9615 * RS785G: 0x9710 - just works, not much tested */ #include #include #include #include #include #include #include #include "rs780.h" extern int is_dev3_present(void); void set_pcie_reset(void); void set_pcie_dereset(void); /* Trust the original resource allocation. Don't do it again. */ #undef DONT_TRUST_RESOURCE_ALLOCATION //#define DONT_TRUST_RESOURCE_ALLOCATION #define CLK_CNTL_INDEX 0x8 #define CLK_CNTL_DATA 0xC /* The Integrated Info Table. */ ATOM_INTEGRATED_SYSTEM_INFO_V2 vgainfo; #ifdef UNUSED_CODE static u32 clkind_read(device_t dev, u32 index) { u32 gfx_bar2 = pci_read_config32(dev, 0x18) & ~0xF; *(u32*)(gfx_bar2+CLK_CNTL_INDEX) = index & 0x7F; return *(u32*)(gfx_bar2+CLK_CNTL_DATA); } #endif static void clkind_write(device_t dev, u32 index, u32 data) { u32 gfx_bar2 = pci_read_config32(dev, 0x18) & ~0xF; /* printk(BIOS_DEBUG, "gfx bar 2 %02x\n", gfx_bar2); */ *(u32*)(gfx_bar2+CLK_CNTL_INDEX) = index | 1<<7; *(u32*)(gfx_bar2+CLK_CNTL_DATA) = data; } /* * pci_dev_read_resources thinks it is a IO type. * We have to force it to mem type. */ static void rs780_gfx_read_resources(device_t dev) { printk(BIOS_DEBUG, "rs780_gfx_read_resources.\n"); /* The initial value of 0x24 is 0xFFFFFFFF, which is confusing. Even if we write 0xFFFFFFFF into it, it will be 0xFFF00000, which tells us it is a memory address base. */ pci_write_config32(dev, 0x24, 0x00000000); /* Get the normal pci resources of this device */ pci_dev_read_resources(dev); compact_resources(dev); } typedef struct _MMIORANGE { u32 Base; u32 Limit; u8 Attribute; } MMIORANGE; MMIORANGE MMIO[8], CreativeMMIO[8]; #define CIM_STATUS u32 #define CIM_SUCCESS 0x00000000 #define CIM_ERROR 0x80000000 #define CIM_UNSUPPORTED 0x80000001 #define CIM_DISABLEPORT 0x80000002 #define MMIO_ATTRIB_NP_ONLY 1 #define MMIO_ATTRIB_BOTTOM_TO_TOP 1<<1 #define MMIO_ATTRIB_SKIP_ZERO 1<<2 #ifdef DONT_TRUST_RESOURCE_ALLOCATION static MMIORANGE* AllocMMIO(MMIORANGE* pMMIO) { int i; for (i=0; i<8; i++) { if (pMMIO[i].Limit == 0) return &pMMIO[i]; } return 0; } static void FreeMMIO(MMIORANGE* pMMIO) { pMMIO->Base = 0; pMMIO->Limit = 0; } static u32 SetMMIO(u32 Base, u32 Limit, u8 Attribute, MMIORANGE *pMMIO) { int i; MMIORANGE * TempRange; for(i=0; i<8; i++) { if(pMMIO[i].Attribute != Attribute && Base >= pMMIO[i].Base && Limit <= pMMIO[i].Limit) { TempRange = AllocMMIO(pMMIO); if(TempRange == 0) return 0x80000000; TempRange->Base = Limit; TempRange->Limit = pMMIO[i].Limit; TempRange->Attribute = pMMIO[i].Attribute; pMMIO[i].Limit = Base; } } TempRange = AllocMMIO(pMMIO); if(TempRange == 0) return 0x80000000; TempRange->Base = Base; TempRange->Limit = Limit; TempRange->Attribute = Attribute; return 0; } static u8 FinalizeMMIO(MMIORANGE *pMMIO) { int i, j, n = 0; for(i=0; i<8; i++) { if (pMMIO[i].Base == pMMIO[i].Limit) { FreeMMIO(&pMMIO[i]); continue; } for(j=0; j> 8) & 0xFF; BusEnd = (Value >> 16) & 0xFF; for(Bus = BusStart; Bus <= BusEnd; Bus++) { for(Dev = 0; Dev <= 0x1f; Dev++) { tempdev = dev_find_slot(Bus, Dev << 3); Value = pci_read_config32(tempdev, 0); printk(BIOS_DEBUG, "Dev ID %x \n", Value); if((Value & 0xffff) == 0x1102) {//Creative //Found Creative SB u32 MMIOStart = 0xffffffff; u32 MMIOLimit = 0; for(Reg = 0x10; Reg < 0x20; Reg+=4) { u32 BaseA, LimitA; BaseA = pci_read_config32(tempdev, Reg); Value = BaseA; if(!(Value & 0x01)) { Value = Value & 0xffffff00; if(Value != 0) { if(MMIOStart > Value) MMIOStart = Value; LimitA = 0xffffffff; //WritePCI(PciAddress,AccWidthUint32,&LimitA); pci_write_config32(tempdev, Reg, LimitA); //ReadPCI(PciAddress,AccWidthUint32,&LimitA); LimitA = pci_read_config32(tempdev, Reg); LimitA = Value + (~LimitA + 1); //WritePCI(PciAddress,AccWidthUint32,&BaseA); pci_write_config32(tempdev, Reg, BaseA); if (LimitA > MMIOLimit) MMIOLimit = LimitA; } } } printk(BIOS_DEBUG, " MMIOStart %x MMIOLimit %x \n", MMIOStart, MMIOLimit); if (MMIOStart < MMIOLimit) { Status = SetMMIO(MMIOStart>>8, MMIOLimit>>8, 0x80, pMMIO); if(Status == CIM_ERROR) return Status; } } } } if(Status == CIM_SUCCESS) { //Lets optimize MMIO if(FinalizeMMIO(pMMIO) > 4) { Status = CIM_ERROR; } } return Status; } static void ProgramMMIO(MMIORANGE *pMMIO, u8 LinkID, u8 Attribute) { int i, j, n = 7; device_t k8_f1; k8_f1 = dev_find_slot(0, PCI_DEVFN(0x18, 1)); for(i = 0; i < 8; i++) { int k = 0, MmioReg; u32 Base = 0; u32 Limit = 0; for(j = 0; j < 8; j++) { if (Base < pMMIO[j].Base) { Base = pMMIO[j].Base; k = j; } } if(pMMIO[k].Limit != 0) { if(Attribute & MMIO_ATTRIB_NP_ONLY && pMMIO[k].Attribute == 0 ) { Base = 0; } else { Base = pMMIO[k].Base | 0x3; Limit= ((pMMIO[k].Limit - 1) & 0xffffff00) | pMMIO[k].Attribute | (LinkID << 4); } FreeMMIO(&pMMIO[k]); } if (Attribute & MMIO_ATTRIB_SKIP_ZERO && Base == 0 && Limit == 0) continue; MmioReg = (Attribute & MMIO_ATTRIB_BOTTOM_TO_TOP)?n:(7-n); n--; //RWPCI(PCI_ADDRESS(0,CPU_DEV,CPU_F1,0x80+MmioReg*8),AccWidthUint32 |S3_SAVE,0x0,0x0); pci_write_config32(k8_f1, 0x80+MmioReg*8, 0); //WritePCI(PCI_ADDRESS(0,CPU_DEV,CPU_F1,0x84+MmioReg*8),AccWidthUint32 |S3_SAVE,&Limit); pci_write_config32(k8_f1, 0x84+MmioReg*8, Limit); //WritePCI(PCI_ADDRESS(0,CPU_DEV,CPU_F1,0x80+MmioReg*8),AccWidthUint32 |S3_SAVE,&Base); pci_write_config32(k8_f1, 0x80+MmioReg*8, Base); } } #endif static void internal_gfx_pci_dev_init(struct device *dev) { unsigned char * bpointer; volatile u32 * GpuF0MMReg; volatile u32 * pointer; int i; u16 command; u32 value, sblink; u16 deviceid, vendorid; device_t nb_dev = dev_find_slot(0, 0); device_t k8_f2 = dev_find_slot(0, PCI_DEVFN(0x18, 2)); device_t k8_f0 = dev_find_slot(0, PCI_DEVFN(0x18, 0)); /* We definetely will use this in future. Just leave it here. */ /*struct southbridge_amd_rs780_config *cfg = (struct southbridge_amd_rs780_config *)dev->chip_info;*/ deviceid = pci_read_config16(dev, PCI_DEVICE_ID); vendorid = pci_read_config16(dev, PCI_VENDOR_ID); printk(BIOS_DEBUG, "internal_gfx_pci_dev_init device=%x, vendor=%x.\n", deviceid, vendorid); command = pci_read_config16(dev, 0x04); command |= 0x7; pci_write_config16(dev, 0x04, command); /* Clear vgainfo. */ bpointer = (unsigned char *) &vgainfo; for(i=0; i>8)|((value&0xff000000)>>8); *(GpuF0MMReg + 0x2c04/4) = ((value&0xff00)<<8); *(GpuF0MMReg + 0x5428/4) = ((value&0xffff0000)+0x10000)-((value&0xffff)<<16); *(GpuF0MMReg + 0x2000/4) = 0x00000011; *(GpuF0MMReg + 0x200c/4) = 0x00000020; *(GpuF0MMReg + 0x2010/4) = 0x10204810; *(GpuF0MMReg + 0x2010/4) = 0x00204810; *(GpuF0MMReg + 0x2014/4) = 0x10408810; *(GpuF0MMReg + 0x2014/4) = 0x00408810; *(GpuF0MMReg + 0x2414/4) = 0x00000080; *(GpuF0MMReg + 0x2418/4) = 0x84422415; *(GpuF0MMReg + 0x2418/4) = 0x04422415; *(GpuF0MMReg + 0x5490/4) = 0x00000001; *(GpuF0MMReg + 0x7de4/4) |= (1<<3) | (1<<4); /* Force allow LDT_STOP Cool'n'Quiet workaround. */ *(GpuF0MMReg + 0x655c/4) |= 1<<4; /* GFX_InitFBAccess finished. */ /* GFX_StartMC. */ #if (CONFIG_GFXUMA == 1) /* for UMA mode. */ /* MC_INIT_COMPLETE. */ set_nbmc_enable_bits(nb_dev, 0x2, 0, 1<<31); /* MC_STARTUP, MC_POWERED_UP and MC_VMODE.*/ set_nbmc_enable_bits(nb_dev, 0x1, 1<<18, 1|1<<2); set_nbmc_enable_bits(nb_dev, 0xb1, 0, 1<<6); set_nbmc_enable_bits(nb_dev, 0xc3, 0, 1); nbmc_write_index(nb_dev, 0x07, 0x18); nbmc_write_index(nb_dev, 0x06, 0x00000102); nbmc_write_index(nb_dev, 0x09, 0x40000008); set_nbmc_enable_bits(nb_dev, 0x6, 0, 1<<31); /* GFX_StartMC finished. */ #else /* for SP mode. */ set_nbmc_enable_bits(nb_dev, 0xaa, 0xf0, 0x30); set_nbmc_enable_bits(nb_dev, 0xce, 0xf0, 0x30); set_nbmc_enable_bits(nb_dev, 0xca, 0xff000000, 0x47000000); set_nbmc_enable_bits(nb_dev, 0xcb, 0x3f000000, 0x01000000); set_nbmc_enable_bits(nb_dev, 0x01, 0, 1<<0); set_nbmc_enable_bits(nb_dev, 0x04, 0, 1<<31); set_nbmc_enable_bits(nb_dev, 0xb4, 0x3f, 0x3f); set_nbmc_enable_bits(nb_dev, 0xb4, 0, 1<<6); set_nbmc_enable_bits(nb_dev, 0xc3, 1<<11, 0); set_nbmc_enable_bits(nb_dev, 0xa0, 1<<29, 0); nbmc_write_index(nb_dev, 0xa4, 0x3484576f); nbmc_write_index(nb_dev, 0xa5, 0x222222df); nbmc_write_index(nb_dev, 0xa6, 0x00000000); nbmc_write_index(nb_dev, 0xa7, 0x00000000); set_nbmc_enable_bits(nb_dev, 0xc3, 1<<8, 0); udelay(10); set_nbmc_enable_bits(nb_dev, 0xc3, 1<<9, 0); udelay(10); set_nbmc_enable_bits(nb_dev, 0x01, 0, 1<<2); udelay(200); set_nbmc_enable_bits(nb_dev, 0x01, 0, 1<<3); set_nbmc_enable_bits(nb_dev, 0xa0, 0, 1<<31); udelay(500); set_nbmc_enable_bits(nb_dev, 0x02, 0, 1<<31); set_nbmc_enable_bits(nb_dev, 0xa0, 0, 1<<30); set_nbmc_enable_bits(nb_dev, 0xa0, 1<<31, 0); set_nbmc_enable_bits(nb_dev, 0xa0, 0, 1<<29); nbmc_write_index(nb_dev, 0xa4, 0x23484576); nbmc_write_index(nb_dev, 0xa5, 0x00000000); nbmc_write_index(nb_dev, 0xa6, 0x00000000); nbmc_write_index(nb_dev, 0xa7, 0x00000000); /* GFX_StartMC finished. */ /* GFX_SPPowerManagment, don't care for new. */ /* Post MC Init table programming. */ set_nbmc_enable_bits(nb_dev, 0xac, ~(0xfffffff0), 0x0b); /* Do we need Write and Read Calibration? */ /* GFX_Init finished. */ #endif /* GFX_InitIntegratedInfo. */ /* fill the Integrated Info Table. */ vgainfo.sHeader.usStructureSize = sizeof(ATOM_INTEGRATED_SYSTEM_INFO_V2); vgainfo.sHeader.ucTableFormatRevision = 1; vgainfo.sHeader.ucTableContentRevision = 2; #if (CONFIG_GFXUMA == 0) /* SP mode. */ vgainfo.ulBootUpSidePortClock = 667*100; vgainfo.ucMemoryType = 3; vgainfo.ulMinSidePortClock = 333*100; #endif vgainfo.ulBootUpEngineClock = 500 * 100; /* set boot up GFX engine clock. */ vgainfo.ulReserved1[0] = 0; vgainfo.ulReserved1[1] = 0; value = pci_read_config32(k8_f2, 0x94); printk(BIOS_DEBUG, "MEMCLK = %x\n", value&0x7); vgainfo.ulBootUpUMAClock = 333 * 100; /* set boot up UMA memory clock. */ vgainfo.ulBootUpSidePortClock = 0; /* disable SP. */ vgainfo.ulMinSidePortClock = 0; /* disable SP. */ for(i=0; i<6; i++) vgainfo.ulReserved2[i] = 0; vgainfo.ulSystemConfig = 0; //vgainfo.ulSystemConfig |= 1<<1 | 1<<3 | 1<<4 | 1<<5 | 1<<6 | 1<<7 | 1; vgainfo.ulBootUpReqDisplayVector = 0; //? vgainfo.ulOtherDisplayMisc = 0; //? vgainfo.ulDDISlot1Config = 0x000c0011; //0; //VGA //vgainfo.ulDDISlot1Config = 0x000c00FF; //0; //HDMI vgainfo.ulDDISlot2Config = 0x00130022; //0; //? vgainfo.ucMemoryType = 2; /* UMA Channel Number: 1 or 2. */ vgainfo.ucUMAChannelNumber = 2; vgainfo.ucDockingPinBit = 0; //? vgainfo.ucDockingPinPolarity = 0; //? vgainfo.ulDockingPinCFGInfo = 0; //? vgainfo.ulCPUCapInfo = 3; /* K8. */ /* page 5-19 on BDG. */ vgainfo.usNumberOfCyclesInPeriod = 0x8019; vgainfo.usMaxNBVoltage = 0x1a; vgainfo.usMinNBVoltage = 0; vgainfo.usBootUpNBVoltage = 0x1a; /* Get SBLink value (HyperTransport I/O Hub Link ID). */ value = pci_read_config32(k8_f0, 0x64); sblink = (value >> 8) & 0x3; printk(BIOS_DEBUG, "SBLINK = %d.\n", sblink); /* HT speed */ value = pci_read_config32(nb_dev, 0xd0); printk(BIOS_DEBUG, "NB HT speed = %x.\n", value); value = pci_read_config32(k8_f0, 0x88 + (sblink * 0x20)); printk(BIOS_DEBUG, "CPU HT speed = %x.\n", value); vgainfo.ulHTLinkFreq = 100 * 100; /* set HT speed. */ /* HT width. */ value = pci_read_config32(nb_dev, 0xc8); printk(BIOS_DEBUG, "HT width = %x.\n", value); vgainfo.usMinHTLinkWidth = 16; vgainfo.usMaxHTLinkWidth = 16; vgainfo.usUMASyncStartDelay = 322; vgainfo.usUMADataReturnTime = 86; vgainfo.usLinkStatusZeroTime = 0x00c8; //0; //? vgainfo.usReserved = 0; vgainfo.ulHighVoltageHTLinkFreq = 100 * 100; vgainfo.ulLowVoltageHTLinkFreq = 100 * 100; vgainfo.usMaxUpStreamHTLinkWidth = 16; vgainfo.usMaxDownStreamHTLinkWidth = 16; vgainfo.usMinUpStreamHTLinkWidth = 16; vgainfo.usMinDownStreamHTLinkWidth = 16; for(i=0; i<97; i++) vgainfo.ulReserved3[i] = 0; /* Transfer the Table to VBIOS. */ pointer = (u32 *)&vgainfo; for(i=0; i> 8; if(Base32 < Limit32) { Status = GetCreativeMMIO(&CreativeMMIO[0]); if(Status != CIM_ERROR) SetMMIO(Base32, Limit32, 0x0, &MMIO[0]); } /* Set MMIO for prefetchable P2P. */ if(Status != CIM_ERROR) { temp = pci_read_config32(dev0x14, 0x24); Base32 = (temp & 0x0fff0) <<8; Limit32 = ((temp & 0x0fff00000) + 0x100000) >> 8; if(Base32 < Limit32) SetMMIO(Base32, Limit32, 0x0, &MMIO[0]); } FinalizeMMIO(&MMIO[0]); ProgramMMIO(&CreativeMMIO[0], 0, MMIO_ATTRIB_NP_ONLY); ProgramMMIO(&MMIO[0], 0, MMIO_ATTRIB_NP_ONLY | MMIO_ATTRIB_BOTTOM_TO_TOP | MMIO_ATTRIB_SKIP_ZERO); #endif pci_dev_init(dev); /* clk ind */ clkind_write(dev, 0x08, 0x01); clkind_write(dev, 0x0C, 0x22); clkind_write(dev, 0x0F, 0x0); clkind_write(dev, 0x11, 0x0); clkind_write(dev, 0x12, 0x0); clkind_write(dev, 0x14, 0x0); clkind_write(dev, 0x15, 0x0); clkind_write(dev, 0x16, 0x0); clkind_write(dev, 0x17, 0x0); clkind_write(dev, 0x18, 0x0); clkind_write(dev, 0x19, 0x0); clkind_write(dev, 0x1A, 0x0); clkind_write(dev, 0x1B, 0x0); clkind_write(dev, 0x1C, 0x0); clkind_write(dev, 0x1D, 0x0); clkind_write(dev, 0x1E, 0x0); clkind_write(dev, 0x26, 0x0); clkind_write(dev, 0x27, 0x0); clkind_write(dev, 0x28, 0x0); clkind_write(dev, 0x5C, 0x0); } /* * Set registers in RS780 and CPU to enable the internal GFX. * Please refer to CIM source code and BKDG. */ extern uint64_t uma_memory_base, uma_memory_size; static void rs780_internal_gfx_enable(device_t dev) { u32 l_dword; int i; device_t nb_dev = dev_find_slot(0, 0); msr_t sysmem; #if (CONFIG_GFXUMA == 0) u32 FB_Start, FB_End; #endif printk(BIOS_DEBUG, "rs780_internal_gfx_enable dev = 0x%p, nb_dev = 0x%p.\n", dev, nb_dev); sysmem = rdmsr(0xc001001a); printk(BIOS_DEBUG, "sysmem = %x_%x\n", sysmem.hi, sysmem.lo); /* The system top memory in 780. */ pci_write_config32(nb_dev, 0x90, sysmem.lo); htiu_write_index(nb_dev, 0x30, 0); htiu_write_index(nb_dev, 0x31, 0); /* Disable external GFX and enable internal GFX. */ l_dword = pci_read_config32(nb_dev, 0x8c); l_dword &= ~(1<<0); l_dword |= 1<<1; pci_write_config32(nb_dev, 0x8c, l_dword); /* NB_SetDefaultIndexes */ pci_write_config32(nb_dev, 0x94, 0x7f); pci_write_config32(nb_dev, 0x60, 0x7f); pci_write_config32(nb_dev, 0xe0, 0); /* NB_InitEarlyNB finished. */ /* LPC DMA Deadlock workaround? */ /* GFX_InitCommon*/ device_t k8_f0 = dev_find_slot(0, PCI_DEVFN(0x18, 0)); l_dword = pci_read_config32(k8_f0, 0x68); l_dword &= ~(3 << 21); l_dword |= (1 << 21); pci_write_config32(k8_f0, 0x68, l_dword); /* GFX_InitCommon. */ nbmc_write_index(nb_dev, 0x23, 0x00c00010); set_nbmc_enable_bits(nb_dev, 0x16, 1<<15, 1<<15); set_nbmc_enable_bits(nb_dev, 0x25, 0xffffffff, 0x111f111f); set_htiu_enable_bits(nb_dev, 0x37, 1<<24, 1<<24); #if (CONFIG_GFXUMA == 1) /* GFX_InitUMA. */ /* Copy CPU DDR Controller to NB MC. */ device_t k8_f2 = dev_find_slot(0, PCI_DEVFN(0x18, 2)); for (i = 0; i < 12; i++) { l_dword = pci_read_config32(k8_f2, 0x40 + i * 4); nbmc_write_index(nb_dev, 0x30 + i, l_dword); } l_dword = pci_read_config32(k8_f2, 0x80); nbmc_write_index(nb_dev, 0x3c, l_dword); l_dword = pci_read_config32(k8_f2, 0x94); if(l_dword & (1<<22)) set_nbmc_enable_bits(nb_dev, 0x3c, 0, 1<<16); else set_nbmc_enable_bits(nb_dev, 0x3c, 1<<16, 0); if(l_dword & (1<<8)) set_nbmc_enable_bits(nb_dev, 0x3c, 0, 1<<17); else set_nbmc_enable_bits(nb_dev, 0x3c, 1<<17, 0); l_dword = pci_read_config32(k8_f2, 0x90); if(l_dword & (1<<10)) set_nbmc_enable_bits(nb_dev, 0x3c, 0, 1<<18); else set_nbmc_enable_bits(nb_dev, 0x3c, 1<<18, 0); /* Set UMA in the 780 side. */ /* UMA start address, size. */ /* The UMA starts at 0xC0000000 of internal RS780 address space [31:16] addr of last byte | [31:16] addr of first byte */ nbmc_write_index(nb_dev, 0x10, ((uma_memory_size - 1 + 0xC0000000) & (~0xffff)) | 0xc000); nbmc_write_index(nb_dev, 0x11, uma_memory_base); nbmc_write_index(nb_dev, 0x12, 0); nbmc_write_index(nb_dev, 0xf0, 256); /* GFX_InitUMA finished. */ #else /* GFX_InitSP. */ /* SP memory:Hynix HY5TQ1G631ZNFP. 128MB = 64M * 16. 667MHz. DDR3. */ /* Enable Async mode. */ set_nbmc_enable_bits(nb_dev, 0x06, 7<<8, 1<<8); set_nbmc_enable_bits(nb_dev, 0x08, 1<<10, 0); /* The last item in AsynchMclkTaskFileIndex. Why? */ /* MC_MPLL_CONTROL2. */ nbmc_write_index(nb_dev, 0x07, 0x40100028); /* MC_MPLL_DIV_CONTROL. */ nbmc_write_index(nb_dev, 0x0b, 0x00000028); /* MC_MPLL_FREQ_CONTROL. */ set_nbmc_enable_bits(nb_dev, 0x09, 3<<12|15<<16|15<<8, 1<<12|4<<16|0<<8); /* MC_MPLL_CONTROL3. For PM. */ set_nbmc_enable_bits(nb_dev, 0x08, 0xff<<13, 1<<13|1<<18); /* MPLL_CAL_TRIGGER. */ set_nbmc_enable_bits(nb_dev, 0x06, 0, 1<<0); udelay(200); /* time is long enough? */ set_nbmc_enable_bits(nb_dev, 0x06, 0, 1<<1); set_nbmc_enable_bits(nb_dev, 0x06, 1<<0, 0); /* MCLK_SRC_USE_MPLL. */ set_nbmc_enable_bits(nb_dev, 0x02, 0, 1<<20); /* Pre Init MC. */ nbmc_write_index(nb_dev, 0x01, 0x88108280); set_nbmc_enable_bits(nb_dev, 0x02, ~(1<<20), 0x00030200); nbmc_write_index(nb_dev, 0x04, 0x08881018); nbmc_write_index(nb_dev, 0x05, 0x000000bb); nbmc_write_index(nb_dev, 0x0c, 0x0f00001f); nbmc_write_index(nb_dev, 0xa1, 0x01f10000); /* MCA_INIT_DLL_PM. */ set_nbmc_enable_bits(nb_dev, 0xc9, 1<<24, 1<<24); nbmc_write_index(nb_dev, 0xa2, 0x74f20000); nbmc_write_index(nb_dev, 0xa3, 0x8af30000); nbmc_write_index(nb_dev, 0xaf, 0x47d0a41c); nbmc_write_index(nb_dev, 0xb0, 0x88800130); nbmc_write_index(nb_dev, 0xb1, 0x00000040); nbmc_write_index(nb_dev, 0xb4, 0x41247000); nbmc_write_index(nb_dev, 0xb5, 0x00066664); nbmc_write_index(nb_dev, 0xb6, 0x00000022); nbmc_write_index(nb_dev, 0xb7, 0x00000044); nbmc_write_index(nb_dev, 0xb8, 0xbbbbbbbb); nbmc_write_index(nb_dev, 0xb9, 0xbbbbbbbb); nbmc_write_index(nb_dev, 0xba, 0x55555555); nbmc_write_index(nb_dev, 0xc1, 0x00000000); nbmc_write_index(nb_dev, 0xc2, 0x00000000); nbmc_write_index(nb_dev, 0xc3, 0x80006b00); nbmc_write_index(nb_dev, 0xc4, 0x00066664); nbmc_write_index(nb_dev, 0xc5, 0x00000000); nbmc_write_index(nb_dev, 0xd2, 0x00000022); nbmc_write_index(nb_dev, 0xd3, 0x00000044); nbmc_write_index(nb_dev, 0xd6, 0x00050005); nbmc_write_index(nb_dev, 0xd7, 0x00000000); nbmc_write_index(nb_dev, 0xd8, 0x00700070); nbmc_write_index(nb_dev, 0xd9, 0x00700070); nbmc_write_index(nb_dev, 0xe0, 0x00200020); nbmc_write_index(nb_dev, 0xe1, 0x00200020); nbmc_write_index(nb_dev, 0xe8, 0x00200020); nbmc_write_index(nb_dev, 0xe9, 0x00200020); nbmc_write_index(nb_dev, 0xe0, 0x00180018); nbmc_write_index(nb_dev, 0xe1, 0x00180018); nbmc_write_index(nb_dev, 0xe8, 0x00180018); nbmc_write_index(nb_dev, 0xe9, 0x00180018); /* Misc options. */ /* Memory Termination. */ set_nbmc_enable_bits(nb_dev, 0xa1, 0x0ff, 0x044); set_nbmc_enable_bits(nb_dev, 0xb4, 0xf00, 0xb00); #if 0 /* Controller Termation. */ set_nbmc_enable_bits(nb_dev, 0xb1, 0x77770000, 0x77770000); #endif /* OEM Init MC. 667MHz. */ nbmc_write_index(nb_dev, 0xa8, 0x7a5aaa78); nbmc_write_index(nb_dev, 0xa9, 0x514a2319); nbmc_write_index(nb_dev, 0xaa, 0x54400520); nbmc_write_index(nb_dev, 0xab, 0x441460ff); nbmc_write_index(nb_dev, 0xa0, 0x20f00a48); set_nbmc_enable_bits(nb_dev, 0xa2, ~(0xffffffc7), 0x10); nbmc_write_index(nb_dev, 0xb2, 0x00000303); set_nbmc_enable_bits(nb_dev, 0xb1, ~(0xffffff70), 0x45); /* Do it later. */ /* set_nbmc_enable_bits(nb_dev, 0xac, ~(0xfffffff0), 0x0b); */ /* Init PM timing. */ for(i=0; i<4; i++) { l_dword = nbmc_read_index(nb_dev, 0xa0+i); nbmc_write_index(nb_dev, 0xc8+i, l_dword); } for(i=0; i<4; i++) { l_dword = nbmc_read_index(nb_dev, 0xa8+i); nbmc_write_index(nb_dev, 0xcc+i, l_dword); } l_dword = nbmc_read_index(nb_dev, 0xb1); set_nbmc_enable_bits(nb_dev, 0xc8, 0xff<<24, ((l_dword&0x0f)<<24)|((l_dword&0xf00)<<20)); /* Init MC FB. */ /* FB_Start = ; FB_End = ; iSpSize = 0x0080, 128MB. */ nbmc_write_index(nb_dev, 0x11, 0x40000000); FB_Start = 0xc00 + 0x080; FB_End = 0xc00 + 0x080; nbmc_write_index(nb_dev, 0x10, (((FB_End&0xfff)<<20)-0x10000)|(((FB_Start&0xfff)-0x080)<<4)); set_nbmc_enable_bits(nb_dev, 0x0d, ~0x000ffff0, (FB_Start&0xfff)<<20); nbmc_write_index(nb_dev, 0x0f, 0); nbmc_write_index(nb_dev, 0x0e, (FB_Start&0xfff)|(0xaaaa<<12)); #endif /* GFX_InitSP finished. */ } static struct pci_operations lops_pci = { .set_subsystem = pci_dev_set_subsystem, }; static struct device_operations pcie_ops = { .read_resources = rs780_gfx_read_resources, .set_resources = pci_dev_set_resources, .enable_resources = pci_dev_enable_resources, .init = internal_gfx_pci_dev_init, /* The option ROM initializes the device. rs780_gfx_init, */ .scan_bus = 0, .enable = rs780_internal_gfx_enable, .ops_pci = &lops_pci, }; /* * We should list all of them here. * */ static const struct pci_driver pcie_driver_780 __pci_driver = { .ops = &pcie_ops, .vendor = PCI_VENDOR_ID_ATI, .device = PCI_DEVICE_ID_ATI_RS780_INT_GFX, }; static const struct pci_driver pcie_driver_780c __pci_driver = { .ops = &pcie_ops, .vendor = PCI_VENDOR_ID_ATI, .device = PCI_DEVICE_ID_ATI_RS780C_INT_GFX, }; static const struct pci_driver pcie_driver_780m __pci_driver = { .ops = &pcie_ops, .vendor = PCI_VENDOR_ID_ATI, .device = PCI_DEVICE_ID_ATI_RS780M_INT_GFX, }; static const struct pci_driver pcie_driver_780mc __pci_driver = { .ops = &pcie_ops, .vendor = PCI_VENDOR_ID_ATI, .device = PCI_DEVICE_ID_ATI_RS780MC_INT_GFX, }; static const struct pci_driver pcie_driver_780e __pci_driver = { .ops = &pcie_ops, .vendor = PCI_VENDOR_ID_ATI, .device = PCI_DEVICE_ID_ATI_RS780E_INT_GFX, }; static const struct pci_driver pcie_driver_785g __pci_driver = { .ops = &pcie_ops, .vendor = PCI_VENDOR_ID_ATI, .device = PCI_DEVICE_ID_ATI_RS785G_INT_GFX, }; /* step 12 ~ step 14 from rpr */ static void single_port_configuration(device_t nb_dev, device_t dev) { u8 result, width; u32 reg32; struct southbridge_amd_rs780_config *cfg = (struct southbridge_amd_rs780_config *)nb_dev->chip_info; printk(BIOS_DEBUG, "rs780_gfx_init single_port_configuration.\n"); /* step 12 training, releases hold training for GFX port 0 (device 2) */ PcieReleasePortTraining(nb_dev, dev, 2); result = PcieTrainPort(nb_dev, dev, 2); printk(BIOS_DEBUG, "rs780_gfx_init single_port_configuration step12.\n"); /* step 13 Power Down Control */ /* step 13.1 Enables powering down transmitter and receiver pads along with PLL macros. */ set_pcie_enable_bits(nb_dev, 0x40, 1 << 0, 1 << 0); /* step 13.a Link Training was NOT successful */ if (!result) { set_nbmisc_enable_bits(nb_dev, 0x8, 0, 0x3 << 4); /* prevent from training. */ set_nbmisc_enable_bits(nb_dev, 0xc, 0, 0x3 << 2); /* hide the GFX bridge. */ if (cfg->gfx_tmds) nbpcie_ind_write_index(nb_dev, 0x65, 0xccf0f0); else { nbpcie_ind_write_index(nb_dev, 0x65, 0xffffffff); set_nbmisc_enable_bits(nb_dev, 0x7, 1 << 3, 1 << 3); } } else { /* step 13.b Link Training was successful */ set_pcie_enable_bits(dev, 0xA2, 0xFF, 0x1); reg32 = nbpcie_p_read_index(dev, 0x29); width = reg32 & 0xFF; printk(BIOS_DEBUG, "GFX Inactive Lanes = 0x%x.\n", width); switch (width) { case 1: case 2: nbpcie_ind_write_index(nb_dev, 0x65, cfg->gfx_lane_reversal ? 0x7f7f : 0xccfefe); break; case 4: nbpcie_ind_write_index(nb_dev, 0x65, cfg->gfx_lane_reversal ? 0x3f3f : 0xccfcfc); break; case 8: nbpcie_ind_write_index(nb_dev, 0x65, cfg->gfx_lane_reversal ? 0x0f0f : 0xccf0f0); break; } } printk(BIOS_DEBUG, "rs780_gfx_init single_port_configuration step13.\n"); /* step 14 Reset Enumeration Timer, disables the shortening of the enumeration timer */ set_pcie_enable_bits(dev, 0x70, 1 << 19, 1 << 19); printk(BIOS_DEBUG, "rs780_gfx_init single_port_configuration step14.\n"); } static void dual_port_configuration(device_t nb_dev, device_t dev) { u8 result, width; u32 reg32, dev_ind = dev->path.pci.devfn >> 3; struct southbridge_amd_rs780_config *cfg = (struct southbridge_amd_rs780_config *)nb_dev->chip_info; /* 5.4.1.2 Dual Port Configuration */ set_nbmisc_enable_bits(nb_dev, 0x36, 1 << 31, 1 << 31); set_nbmisc_enable_bits(nb_dev, 0x08, 0xF << 8, 0x5 << 8); set_nbmisc_enable_bits(nb_dev, 0x36, 1 << 31, 0 << 31); /* 5.7. Training for Device 2 */ /* 5.7.1. Releases hold training for GFX port 0 (device 2) */ PcieReleasePortTraining(nb_dev, dev, dev_ind); /* 5.7.2- 5.7.9. PCIE Link Training Sequence */ result = PcieTrainPort(nb_dev, dev, dev_ind); /* Power Down Control for Device 2 */ /* Link Training was NOT successful */ if (!result) { /* Powers down all lanes for port A */ /* nbpcie_ind_write_index(nb_dev, 0x65, 0x0f0f); */ /* Note: I have to disable the slot where there isnt a device, * otherwise the system will hang. I dont know why. */ set_nbmisc_enable_bits(nb_dev, 0x0c, 1 << dev_ind, 1 << dev_ind); } else { /* step 16.b Link Training was successful */ reg32 = nbpcie_p_read_index(dev, 0xa2); width = (reg32 >> 4) & 0x7; printk(BIOS_DEBUG, "GFX LC_LINK_WIDTH = 0x%x.\n", width); switch (width) { case 1: case 2: nbpcie_ind_write_index(nb_dev, 0x65, cfg->gfx_lane_reversal ? 0x0707 : 0x0e0e); break; case 4: nbpcie_ind_write_index(nb_dev, 0x65, cfg->gfx_lane_reversal ? 0x0303 : 0x0c0c); break; } } } /* For single port GFX configuration Only * width: * 000 = x16 * 001 = x1 * 010 = x2 * 011 = x4 * 100 = x8 * 101 = x12 (not supported) * 110 = x16 */ static void dynamic_link_width_control(device_t nb_dev, device_t dev, u8 width) { u32 reg32; device_t sb_dev; struct southbridge_amd_rs780_config *cfg = (struct southbridge_amd_rs780_config *)nb_dev->chip_info; /* step 5.9.1.1 */ reg32 = nbpcie_p_read_index(dev, 0xa2); /* step 5.9.1.2 */ set_pcie_enable_bits(nb_dev, 0x40, 1 << 0, 1 << 0); /* step 5.9.1.3 */ set_pcie_enable_bits(dev, 0xa2, 3 << 0, width << 0); /* step 5.9.1.4 */ set_pcie_enable_bits(dev, 0xa2, 1 << 8, 1 << 8); /* step 5.9.2.4 */ if (0 == cfg->gfx_reconfiguration) set_pcie_enable_bits(dev, 0xa2, 1 << 11, 1 << 11); /* step 5.9.1.5 */ do { reg32 = nbpcie_p_read_index(dev, 0xa2); } while (reg32 & 0x100); /* step 5.9.1.6 */ sb_dev = dev_find_slot(0, PCI_DEVFN(8, 0)); do { reg32 = pci_ext_read_config32(nb_dev, sb_dev, PCIE_VC0_RESOURCE_STATUS); } while (reg32 & VC_NEGOTIATION_PENDING); /* step 5.9.1.7 */ reg32 = nbpcie_p_read_index(dev, 0xa2); if (((reg32 & 0x70) >> 4) != 0x6) { /* the unused lanes should be powered off. */ } /* step 5.9.1.8 */ set_pcie_enable_bits(nb_dev, 0x40, 1 << 0, 0 << 0); } /* * GFX Core initialization, dev2, dev3 */ void rs780_gfx_init(device_t nb_dev, device_t dev, u32 port) { u32 reg32; struct southbridge_amd_rs780_config *cfg = (struct southbridge_amd_rs780_config *)nb_dev->chip_info; printk(BIOS_DEBUG, "rs780_gfx_init, nb_dev=0x%p, dev=0x%p, port=0x%x.\n", nb_dev, dev, port); /* GFX Core Initialization */ //if (port == 2) return; /* step 2, TMDS, (only need if CMOS option is enabled) */ if (cfg->gfx_tmds) { } #if 1 /* external clock mode */ /* table 5-22, 5.9.1. REFCLK */ /* 5.9.1.1. Disables the GFX REFCLK transmitter so that the GFX * REFCLK PAD can be driven by an external source. */ /* 5.9.1.2. Enables GFX REFCLK receiver to receive the REFCLK from an external source. */ set_nbmisc_enable_bits(nb_dev, 0x38, 1 << 29 | 1 << 28, 0 << 29 | 1 << 28); /* 5.9.1.3 Selects the GFX REFCLK to be the source for PLL A. */ /* 5.9.1.4 Selects the GFX REFCLK to be the source for PLL B. */ /* 5.9.1.5 Selects the GFX REFCLK to be the source for PLL C. */ set_nbmisc_enable_bits(nb_dev, 0x28, 3 << 6 | 3 << 8 | 3 << 10, 1 << 6 | 1 << 8 | 1 << 10); reg32 = nbmisc_read_index(nb_dev, 0x28); printk(BIOS_DEBUG, "misc 28 = %x\n", reg32); /* 5.9.1.6.Selects the single ended GFX REFCLK to be the source for core logic. */ set_nbmisc_enable_bits(nb_dev, 0x6C, 1 << 31, 1 << 31); #else /* internal clock mode */ /* table 5-23, 5.9.1. REFCLK */ /* 5.9.1.1. Enables the GFX REFCLK transmitter so that the GFX * REFCLK PAD can be driven by the SB REFCLK. */ /* 5.9.1.2. Disables GFX REFCLK receiver from receiving the * REFCLK from an external source.*/ set_nbmisc_enable_bits(nb_dev, 0x38, 1 << 29 | 1 << 28, 1 << 29 | 0 << 28); /* 5.9.1.3 Selects the GFX REFCLK to be the source for PLL A. */ /* 5.9.1.4 Selects the GFX REFCLK to be the source for PLL B. */ /* 5.9.1.5 Selects the GFX REFCLK to be the source for PLL C. */ set_nbmisc_enable_bits(nb_dev, 0x28, 3 << 6 | 3 << 8 | 3 << 10, 0); reg32 = nbmisc_read_index(nb_dev, 0x28); printk(BIOS_DEBUG, "misc 28 = %x\n", reg32); /* 5.9.1.6.Selects the single ended GFX REFCLK to be the source for core logic. */ set_nbmisc_enable_bits(nb_dev, 0x6C, 1 << 31, 0 << 31); #endif /* step 5.9.3, GFX overclocking, (only need if CMOS option is enabled) */ /* 5.9.3.1. Increases PLL BW for 6G operation.*/ /* set_nbmisc_enable_bits(nb_dev, 0x36, 0x3FF << 4, 0xB5 << 4); */ /* skip */ /* step 5.9.4, reset the GFX link */ /* step 5.9.4.1 asserts both calibration reset and global reset */ set_nbmisc_enable_bits(nb_dev, 0x8, 0x3 << 14, 0x3 << 14); /* step 5.9.4.2 de-asserts calibration reset */ set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 14, 0 << 14); /* step 5.9.4.3 wait for at least 200us */ udelay(300); /* step 5.9.4.4 de-asserts global reset */ set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 15, 0 << 15); /* 5.9.5 Reset PCIE_GFX Slot */ /* It is done in mainboard.c */ set_pcie_reset(); mdelay(1); set_pcie_dereset(); /* step 5.9.8 program PCIE memory mapped configuration space */ /* done by enable_pci_bar3() before */ /* step 7 compliance state, (only need if CMOS option is enabled) */ /* the compliance stete is just for test. refer to 4.2.5.2 of PCIe specification */ if (cfg->gfx_compliance) { /* force compliance */ set_nbmisc_enable_bits(nb_dev, 0x32, 1 << 6, 1 << 6); /* release hold training for device 2. GFX initialization is done. */ set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 4, 0 << 4); dynamic_link_width_control(nb_dev, dev, cfg->gfx_link_width); printk(BIOS_DEBUG, "rs780_gfx_init step7.\n"); return; } /* 5.9.12 Core Initialization. */ /* 5.9.12.1 sets RCB timeout to be 25ms */ /* 5.9.12.2. RCB Cpl timeout on link down. */ set_pcie_enable_bits(dev, 0x70, 7 << 16 | 1 << 19, 4 << 16 | 1 << 19); printk(BIOS_DEBUG, "rs780_gfx_init step5.9.12.1.\n"); /* step 5.9.12.3 disables slave ordering logic */ set_pcie_enable_bits(nb_dev, 0x20, 1 << 8, 1 << 8); printk(BIOS_DEBUG, "rs780_gfx_init step5.9.12.3.\n"); /* step 5.9.12.4 sets DMA payload size to 64 bytes */ set_pcie_enable_bits(nb_dev, 0x10, 7 << 10, 4 << 10); /* 5.9.12.5. Blocks DMA traffic during C3 state. */ set_pcie_enable_bits(dev, 0x10, 1 << 0, 0 << 0); /* 5.9.12.6. Disables RC ordering logic */ set_pcie_enable_bits(nb_dev, 0x20, 1 << 9, 1 << 9); /* Enabels TLP flushing. */ /* Note: It is got from RS690. The system will hang without this action. */ set_pcie_enable_bits(dev, 0x20, 1 << 19, 0 << 19); /* 5.9.12.7. Ignores DLLPs during L1 so that txclk can be turned off */ set_pcie_enable_bits(nb_dev, 0x2, 1 << 0, 1 << 0); /* 5.9.12.8 Prevents LC to go from L0 to Rcv_L0s if L1 is armed. */ set_pcie_enable_bits(dev, 0xA1, 1 << 11, 1 << 11); /* 5.9.12.9 CMGOOD_OVERRIDE for end point initiated lane degradation. */ set_nbmisc_enable_bits(nb_dev, 0x6a, 1 << 17, 1 << 17); printk(BIOS_DEBUG, "rs780_gfx_init step5.9.12.9.\n"); /* 5.9.12.10 Sets the timer in Config state from 20us to */ /* 5.9.12.11 De-asserts RX_EN in L0s. */ /* 5.9.12.12 Enables de-assertion of PG2RX_CR_EN to lock clock * recovery parameter when lane is in electrical idle in L0s.*/ set_pcie_enable_bits(dev, 0xB1, 1 << 23 | 1 << 19 | 1 << 28, 1 << 23 | 1 << 19 | 1 << 28); /* 5.9.12.13. Turns off offset calibration. */ /* 5.9.12.14. Enables Rx Clock gating in CDR */ set_nbmisc_enable_bits(nb_dev, 0x34, 1 << 10/* | 1 << 22 */, 1 << 10/* | 1 << 22 */); /* 5.9.12.15. Sets number of TX Clocks to drain TX Pipe to 3. */ set_pcie_enable_bits(dev, 0xA0, 0xF << 4, 3 << 4); /* 5.9.12.16. Lets PI use Electrical Idle from PHY when * turning off PLL in L1 at Gen2 speed instead Inferred Electrical Idle. */ set_pcie_enable_bits(nb_dev, 0x40, 3 << 14, 2 << 14); /* 5.9.12.17. Prevents the Electrical Idle from causing a transition from Rcv_L0 to Rcv_L0s. */ set_pcie_enable_bits(dev, 0xB1, 1 << 20, 1 << 20); /* 5.9.12.18. Prevents the LTSSM from going to Rcv_L0s if it has already * acknowledged a request to go to L1. */ set_pcie_enable_bits(dev, 0xA1, 1 << 11, 1 << 11); /* 5.9.12.19. LDSK only taking deskew on deskewing error detect */ set_pcie_enable_bits(nb_dev, 0x40, 1 << 28, 0 << 28); /* 5.9.12.20. Bypasses lane de-skew logic if in x1 */ set_pcie_enable_bits(nb_dev, 0xC2, 1 << 14, 1 << 14); /* 5.9.12.21. Sets Electrical Idle Threshold. */ set_nbmisc_enable_bits(nb_dev, 0x35, 3 << 21, 2 << 21); /* 5.9.12.22. Advertises -6 dB de-emphasis value in TS1 Data Rate Identifier * Only if CMOS Option in section. skip */ /* 5.9.12.23. Disables GEN2 capability of the device. */ set_pcie_enable_bits(dev, 0xA4, 1 << 0, 0 << 0); /* 5.9.12.24.Disables advertising Upconfigure Support. */ set_pcie_enable_bits(dev, 0xA2, 1 << 13, 1 << 13); /* 5.9.12.25. No comment in RPR. */ set_nbmisc_enable_bits(nb_dev, 0x39, 1 << 10, 0 << 10); /* 5.9.12.26. This capacity is required since links wider than x1 and/or multiple link * speed are supported */ set_pcie_enable_bits(nb_dev, 0xC1, 1 << 0, 1 << 0); /* 5.9.12.27. Enables NVG86 ECO. A13 above only. */ if (get_nb_rev(nb_dev) == REV_RS780_A12) /* A12 */ set_pcie_enable_bits(dev, 0x02, 1 << 11, 1 << 11); /* 5.9.12.28 Hides and disables the completion timeout method. */ set_pcie_enable_bits(nb_dev, 0xC1, 1 << 2, 0 << 2); /* 5.9.12.29. Use the bif_core de-emphasis strength by default. */ /* set_nbmisc_enable_bits(nb_dev, 0x36, 1 << 28, 1 << 28); */ /* 5.9.12.30. Set TX arbitration algorithm to round robin */ set_pcie_enable_bits(nb_dev, 0x1C, 1 << 0 | 0x1F << 1 | 0x1F << 6, 1 << 0 | 0x04 << 1 | 0x04 << 6); /* Single-port/Dual-port configureation. */ switch (cfg->gfx_dual_slot) { case 0: /* step 1, lane reversal (only need if build config option is enabled) */ if (cfg->gfx_lane_reversal) { set_nbmisc_enable_bits(nb_dev, 0x36, 1 << 31, 1 << 31); set_nbmisc_enable_bits(nb_dev, 0x33, 1 << 2, 1 << 2); set_nbmisc_enable_bits(nb_dev, 0x36, 1 << 31, 0 << 31); } printk(BIOS_DEBUG, "rs780_gfx_init step1.\n"); printk(BIOS_DEBUG, "device = %x\n", dev->path.pci.devfn >> 3); if((dev->path.pci.devfn >> 3) == 2) { single_port_configuration(nb_dev, dev); } else { set_nbmisc_enable_bits(nb_dev, 0xc, 0, 0x2 << 2); /* hide the GFX bridge. */ printk(BIOS_INFO, "Single port. Do nothing.\n"); // If dev3 } break; case 1: /* step 1, lane reversal (only need if build config option is enabled) */ if (cfg->gfx_lane_reversal) { set_nbmisc_enable_bits(nb_dev, 0x36, 1 << 31, 1 << 31); set_nbmisc_enable_bits(nb_dev, 0x33, 1 << 2, 1 << 2); set_nbmisc_enable_bits(nb_dev, 0x33, 1 << 3, 1 << 3); set_nbmisc_enable_bits(nb_dev, 0x36, 1 << 31, 0 << 31); } printk(BIOS_DEBUG, "rs780_gfx_init step1.\n"); /* step 1.1, dual-slot gfx configuration (only need if CMOS option is enabled) */ /* AMD calls the configuration CrossFire */ set_nbmisc_enable_bits(nb_dev, 0x0, 0xf << 8, 5 << 8); printk(BIOS_DEBUG, "rs780_gfx_init step2.\n"); printk(BIOS_DEBUG, "device = %x\n", dev->path.pci.devfn >> 3); dual_port_configuration(nb_dev, dev); break; case 2: if(is_dev3_present()){ /* step 1, lane reversal (only need if CMOS option is enabled) */ if (cfg->gfx_lane_reversal) { set_nbmisc_enable_bits(nb_dev, 0x33, 1 << 2, 1 << 2); set_nbmisc_enable_bits(nb_dev, 0x33, 1 << 3, 1 << 3); } printk(BIOS_DEBUG, "rs780_gfx_init step1.\n"); /* step 1.1, dual-slot gfx configuration (only need if CMOS option is enabled) */ /* AMD calls the configuration CrossFire */ set_nbmisc_enable_bits(nb_dev, 0x0, 0xf << 8, 5 << 8); printk(BIOS_DEBUG, "rs780_gfx_init step2.\n"); printk(BIOS_DEBUG, "device = %x\n", dev->path.pci.devfn >> 3); dual_port_configuration(nb_dev, dev); }else{ if (cfg->gfx_lane_reversal) { set_nbmisc_enable_bits(nb_dev, 0x33, 1 << 2, 1 << 2); } printk(BIOS_DEBUG, "rs780_gfx_init step1.\n"); printk(BIOS_DEBUG, "rs780_gfx_init step2.\n"); if((dev->path.pci.devfn >> 3) == 2) single_port_configuration(nb_dev, dev); else{ set_nbmisc_enable_bits(nb_dev, 0xc, 0, 0x2 << 2); /* hide the GFX bridge. */ printk(BIOS_DEBUG, "If dev3.., single port. Do nothing.\n"); } } default: printk(BIOS_INFO, "Incorrect configuration of external GFX slot.\n"); break; } }