/* SPDX-License-Identifier: Apache-2.0 */ /* SPDX-License-Identifier: GPL-2.0-or-later */ /* See the file LICENSE for further information */ #ifndef _SIFIVE_SDRAM_H #define _SIFIVE_SDRAM_H #include <console/console.h> #include <device/mmio.h> #include <soc/addressmap.h> #include <soc/sdram.h> #include <stdint.h> #include <stddef.h> #define DRAM_CLASS_OFFSET 8 #define DRAM_CLASS_DDR4 0xA #define OPTIMAL_RMODW_EN_OFFSET 0 #define DISABLE_RD_INTERLEAVE_OFFSET 16 #define OUT_OF_RANGE_FLAG (1 << 1) #define MULTIPLE_OUT_OF_RANGE_FLAG (1 << 2) #define PORT_COMMAND_CHANNEL_ERROR_FLAG (1 << 7) #define MC_INIT_COMPLETE_FLAG (1 << 8) // Memory Controller init complete #define LEVELING_OPERATION_COMPLETED_FLAG (1 << 22) #define DFI_PHY_WRLELV_MODE_OFFSET 24 #define DFI_PHY_RDLVL_MODE_OFFSET 24 #define DFI_PHY_RDLVL_GATE_MODE_OFFSET 0 #define VREF_EN_OFFSET 24 #define PORT_ADDR_PROTECTION_EN_OFFSET 0 #define AXI0_ADDRESS_RANGE_ENABLE_OFFSET 8 #define AXI0_RANGE_PROT_BITS_0_OFFSET 24 #define RDLVL_EN_OFFSET 16 #define RDLVL_GATE_EN_OFFSET 24 #define WRLVL_EN_OFFSET 0 #define PHY_RX_CAL_DQ0_0_OFFSET 0 #define PHY_RX_CAL_DQ1_0_OFFSET 16 // reference: fu740-c000 manual chapter 32: DDR Subsystem // Cahpter 32.2: Memory Map #define FU740_DDRCTRL 0x100b0000 #define FU740_DDRPHY 0x100b2000 #define FU740_PHYSICAL_FILTER 0x100b8000 // formerly called DDRBUSBLOCKER (FU540) #define FU740_DDRMGMT 0x100c0000 static void phy_reset(u32 *ddrphyreg, const u32 *physettings) { for (int i = 1152; i <= 1214; i++) write32(&ddrphyreg[i], physettings[i]); for (int i = 0; i <= 1151; i++) write32(&ddrphyreg[i], physettings[i]); } static void ux00ddr_writeregmap(u32 *ahbregaddr, const u32 *ctlsettings, const u32 *physettings) { u32 *ddrctlreg = (u32 *) ahbregaddr; u32 *ddrphyreg = ((u32 *) ahbregaddr) + (0x2000 / sizeof(u32)); //TODO use FU740_DDRPHY instead for (int i = 0; i <= 264; i++) write32((void *)&ddrctlreg[i], ctlsettings[i]); phy_reset(ddrphyreg, physettings); } static void ux00ddr_start(u32 *ahbregaddr, u64 *filteraddr, uint64_t ddrend) { // start calibration and training operation setbits32(ahbregaddr, 0x1); // wait for memory initialization complete // bit 8 of INT_STATUS (DENALI_CTL_132) 0x210 while (!(read32(&ahbregaddr[132]) & MC_INIT_COMPLETE_FLAG)) ; // Disable the BusBlocker in front of the controller AXI slave ports write64(filteraddr, 0x0f00000000000000UL | (ddrend >> 2)); // ^ RWX + TOR } static void ux00ddr_mask_mc_init_complete_interrupt(u32 *ahbregaddr) { // Mask off Bit 8 of Interrupt Status // Bit [8] The MC initialization has been completed setbits32(&ahbregaddr[136], MC_INIT_COMPLETE_FLAG); } static void ux00ddr_mask_outofrange_interrupts(u32 *ahbregaddr) { // Mask off Bit 8, Bit 2 and Bit 1 of Interrupt Status // Bit [2] Multiple accesses outside the defined PHYSICAL memory space have occurred // Bit [1] A memory access outside the defined PHYSICAL memory space has occurred setbits32(&ahbregaddr[136], OUT_OF_RANGE_FLAG | MULTIPLE_OUT_OF_RANGE_FLAG); } static void ux00ddr_mask_port_command_error_interrupt(u32 *ahbregaddr) { // Mask off Bit 7 of Interrupt Status // Bit [7] An error occurred on the port command channel setbits32(&ahbregaddr[136], PORT_COMMAND_CHANNEL_ERROR_FLAG); } static void ux00ddr_mask_leveling_completed_interrupt(u32 *ahbregaddr) { // Mask off Bit 22 of Interrupt Status // Bit [22] The leveling operation has completed setbits32(&ahbregaddr[136], LEVELING_OPERATION_COMPLETED_FLAG); } static void ux00ddr_setuprangeprotection(u32 *ahbregaddr, size_t size) { write32(&ahbregaddr[209], 0x0); u32 size_16Kblocks = ((size >> 14) & 0x7FFFFF) - 1; write32(&ahbregaddr[210], size_16Kblocks); write32(&ahbregaddr[212], 0x0); write32(&ahbregaddr[214], 0x0); write32(&ahbregaddr[216], 0x0); setbits32(&ahbregaddr[224], (0x3 << AXI0_RANGE_PROT_BITS_0_OFFSET)); write32(&ahbregaddr[225], 0xFFFFFFFF); setbits32(&ahbregaddr[208], (1 << AXI0_ADDRESS_RANGE_ENABLE_OFFSET)); setbits32(&ahbregaddr[208], (1 << PORT_ADDR_PROTECTION_EN_OFFSET)); } static void ux00ddr_disableaxireadinterleave(u32 *ahbregaddr) { setbits32(&ahbregaddr[120], (1 << DISABLE_RD_INTERLEAVE_OFFSET)); } static void ux00ddr_disableoptimalrmodw(u32 *ahbregaddr) { clrbits32(&ahbregaddr[21], (1 << OPTIMAL_RMODW_EN_OFFSET)); } static void ux00ddr_enablewriteleveling(u32 *ahbregaddr) { setbits32(&ahbregaddr[170], (1 << WRLVL_EN_OFFSET) | (1 << DFI_PHY_WRLELV_MODE_OFFSET)); } static void ux00ddr_enablereadleveling(u32 *ahbregaddr) { setbits32(&ahbregaddr[181], (1 << DFI_PHY_RDLVL_MODE_OFFSET)); setbits32(&ahbregaddr[260], (1 << RDLVL_EN_OFFSET)); } static void ux00ddr_enablereadlevelinggate(u32 *ahbregaddr) { setbits32(&ahbregaddr[260], (1 << RDLVL_GATE_EN_OFFSET)); setbits32(&ahbregaddr[182], (1 << DFI_PHY_RDLVL_GATE_MODE_OFFSET)); } static void ux00ddr_enablevreftraining(u32 *ahbregaddr) { setbits32(&ahbregaddr[184], (1 << VREF_EN_OFFSET)); } static u32 ux00ddr_getdramclass(u32 *ahbregaddr) { return ((read32(ahbregaddr) >> DRAM_CLASS_OFFSET) & 0xF); } static void ux00ddr_phy_fixup(void *ahbregaddr) { void *ddrphyreg = ahbregaddr + 0x2000; // bitmask of failed lanes uint64_t fails = 0; u32 slicebase = 0; u32 dq = 0; // check errata condition for (u32 slice = 0; slice < 8; slice++) { u32 regbase = slicebase + 34; for (u32 reg = 0 ; reg < 4; reg++) { u32 updownreg = read32(ddrphyreg + ((regbase+reg) << 2)); for (u32 bit = 0; bit < 2; bit++) { u32 phy_rx_cal_dqn_0_offset; if (bit == 0) phy_rx_cal_dqn_0_offset = PHY_RX_CAL_DQ0_0_OFFSET; else phy_rx_cal_dqn_0_offset = PHY_RX_CAL_DQ1_0_OFFSET; u32 down = (updownreg >> phy_rx_cal_dqn_0_offset) & 0x3F; u32 up = (updownreg >> (phy_rx_cal_dqn_0_offset + 6)) & 0x3F; uint8_t failc0 = ((down == 0) && (up == 0x3F)); uint8_t failc1 = ((up == 0) && (down == 0x3F)); // print error message on failure if (failc0 || failc1) { fails |= (1 << dq); char slicelsc = '0'; char slicemsc = '0'; slicelsc += (dq % 10); slicemsc += (dq / 10); printk(BIOS_ERR, "S %c%c%c\n", slicelsc, slicemsc, failc0 ? 'U' : 'D'); } dq++; } } slicebase += 128; } if (fails) printk(BIOS_ERR, "DDR error in fixing up: %llx\n", fails); } extern const u32 denali_ddr_phy_data[1215]; extern const u32 denali_ddr_ctl_data[265]; void sdram_init(size_t dram_size) { u32 *ddrctrl = (u32 *)FU740_DDRCTRL; u64 *ddr_physical_filter = (u64 *)FU740_PHYSICAL_FILTER; ux00ddr_writeregmap(ddrctrl, denali_ddr_ctl_data, denali_ddr_phy_data); ux00ddr_disableaxireadinterleave(ddrctrl); ux00ddr_disableoptimalrmodw(ddrctrl); ux00ddr_enablewriteleveling(ddrctrl); ux00ddr_enablereadleveling(ddrctrl); ux00ddr_enablereadlevelinggate(ddrctrl); if (ux00ddr_getdramclass(ddrctrl) == DRAM_CLASS_DDR4) ux00ddr_enablevreftraining(ddrctrl); // mask off interrupts for leveling completion ux00ddr_mask_leveling_completed_interrupt(ddrctrl); ux00ddr_mask_mc_init_complete_interrupt(ddrctrl); ux00ddr_mask_outofrange_interrupts(ddrctrl); ux00ddr_setuprangeprotection(ddrctrl, dram_size); ux00ddr_mask_port_command_error_interrupt(ddrctrl); ux00ddr_start(ddrctrl, ddr_physical_filter, FU740_DRAM + dram_size); ux00ddr_phy_fixup(ddrctrl); } // sdram_init MUST be called before sdram_size size_t sdram_size(void) { u64 devicepmp0 = read64((u64 *)FU740_PHYSICAL_FILTER); return ((devicepmp0 & 0xFFFFFFFFFFFFFF) << 2) - FU740_DRAM; } #endif