/* SPDX-License-Identifier: GPL-2.0-only */ #include <device/mmio.h> #include <console/console.h> #include <delay.h> #include <reset.h> #include <soc/addressmap.h> #include <soc/clock.h> #include <soc/sdram.h> #include <soc/grf.h> #include <soc/soc.h> #include <timer.h> #include <types.h> #define DDR_PI_OFFSET 0x800 #define DDR_PHY_OFFSET 0x2000 #define DDRC0_PI_BASE_ADDR (DDRC0_BASE_ADDR + DDR_PI_OFFSET) #define DDRC0_PHY_BASE_ADDR (DDRC0_BASE_ADDR + DDR_PHY_OFFSET) #define DDRC1_PI_BASE_ADDR (DDRC1_BASE_ADDR + DDR_PI_OFFSET) #define DDRC1_PHY_BASE_ADDR (DDRC1_BASE_ADDR + DDR_PHY_OFFSET) static struct rk3399_ddr_pctl_regs * const rk3399_ddr_pctl[2] = { (void *)DDRC0_BASE_ADDR, (void *)DDRC1_BASE_ADDR }; static struct rk3399_ddr_pi_regs * const rk3399_ddr_pi[2] = { (void *)DDRC0_PI_BASE_ADDR, (void *)DDRC1_PI_BASE_ADDR }; static struct rk3399_ddr_publ_regs * const rk3399_ddr_publ[2] = { (void *)DDRC0_PHY_BASE_ADDR, (void *)DDRC1_PHY_BASE_ADDR }; static struct rk3399_msch_regs * const rk3399_msch[2] = { (void *)SERVER_MSCH0_BASE_ADDR, (void *)SERVER_MSCH1_BASE_ADDR }; static struct rk3399_ddr_cic_regs *const rk3399_ddr_cic = (void *)CIC_BASE_ADDR; /* * sys_reg bitfield struct * [31] row_3_4_ch1 * [30] row_3_4_ch0 * [29:28] chinfo * [27] rank_ch1 * [26:25] col_ch1 * [24] bk_ch1 * [23:22] cs0_row_ch1 * [21:20] cs1_row_ch1 * [19:18] bw_ch1 * [17:16] dbw_ch1; * [15:13] ddrtype * [12] channelnum * [11] rank_ch0 * [10:9] col_ch0 * [8] bk_ch0 * [7:6] cs0_row_ch0 * [5:4] cs1_row_ch0 * [3:2] bw_ch0 * [1:0] dbw_ch0 */ #define SYS_REG_ENC_ROW_3_4(n, ch) ((n) << (30 + (ch))) #define SYS_REG_DEC_ROW_3_4(n, ch) ((n >> (30 + ch)) & 0x1) #define SYS_REG_ENC_CHINFO(ch) (1 << (28 + (ch))) #define SYS_REG_ENC_DDRTYPE(n) ((n) << 13) #define SYS_REG_ENC_NUM_CH(n) (((n) - 1) << 12) #define SYS_REG_DEC_NUM_CH(n) (1 + ((n >> 12) & 0x1)) #define SYS_REG_ENC_RANK(n, ch) (((n) - 1) << (11 + ((ch) * 16))) #define SYS_REG_DEC_RANK(n, ch) (1 + ((n >> (11 + 16 * ch)) & 0x1)) #define SYS_REG_ENC_COL(n, ch) (((n) - 9) << (9 + ((ch) * 16))) #define SYS_REG_DEC_COL(n, ch) (9 + ((n >> (9 + 16 * ch)) & 0x3)) #define SYS_REG_ENC_BK(n, ch) (((n) == 3 ? 0 : 1) \ << (8 + ((ch) * 16))) #define SYS_REG_DEC_BK(n, ch) (3 - ((n >> (8 + 16 * ch)) & 0x1)) #define SYS_REG_ENC_CS0_ROW(n, ch) (((n) - 13) << (6 + ((ch) * 16))) #define SYS_REG_DEC_CS0_ROW(n, ch) (13 + ((n >> (6 + 16 * ch)) & 0x3)) #define SYS_REG_ENC_CS1_ROW(n, ch) (((n) - 13) << (4 + ((ch) * 16))) #define SYS_REG_DEC_CS1_ROW(n, ch) (13 + ((n >> (4 + 16 * ch)) & 0x3)) #define SYS_REG_ENC_BW(n, ch) ((2 >> (n)) << (2 + ((ch) * 16))) #define SYS_REG_DEC_BW(n, ch) (2 >> ((n >> (2 + 16 * ch)) & 0x3)) #define SYS_REG_ENC_DBW(n, ch) ((2 >> (n)) << (0 + ((ch) * 16))) #define SYS_REG_DEC_DBW(n, ch) (2 >> ((n >> (0 + 16 * ch)) & 0x3)) #define DDR_STRIDE(n) write32(&rk3399_pmusgrf->soc_con4,\ (0x1F << (10 + 16)) | (n << 10)) #define PRESET_SGRF_HOLD(n) ((0x1 << (6+16)) | ((n) << 6)) #define PRESET_GPIO0_HOLD(n) ((0x1 << (7+16)) | ((n) << 7)) #define PRESET_GPIO1_HOLD(n) ((0x1 << (8+16)) | ((n) << 8)) #define PHY_DRV_ODT_Hi_Z (0x0) #define PHY_DRV_ODT_240 (0x1) #define PHY_DRV_ODT_120 (0x8) #define PHY_DRV_ODT_80 (0x9) #define PHY_DRV_ODT_60 (0xc) #define PHY_DRV_ODT_48 (0xd) #define PHY_DRV_ODT_40 (0xe) #define PHY_DRV_ODT_34_3 (0xf) #define MAX_RANKS_PER_CHANNEL 4 static void copy_to_reg(u32 *dest, const u32 *src, u32 n) { int i; for (i = 0; i < n / sizeof(u32); i++) { write32(dest, *src); src++; dest++; } } static void phy_pctrl_reset(u32 channel) { rkclk_ddr_reset(channel, 1, 1); udelay(10); rkclk_ddr_reset(channel, 1, 0); udelay(10); rkclk_ddr_reset(channel, 0, 0); udelay(10); } static void phy_dll_bypass_set(struct rk3399_ddr_publ_regs *ddr_publ_regs, u32 freq) { u32 *denali_phy = ddr_publ_regs->denali_phy; if (freq <= 125*MHz) { /* phy_sw_master_mode_X PHY_86/214/342/470 4bits offset_8 */ setbits32(&denali_phy[86], (0x3 << 2) << 8); setbits32(&denali_phy[214], (0x3 << 2) << 8); setbits32(&denali_phy[342], (0x3 << 2) << 8); setbits32(&denali_phy[470], (0x3 << 2) << 8); /* phy_adrctl_sw_master_mode PHY_547/675/803 4bits offset_16 */ setbits32(&denali_phy[547], (0x3 << 2) << 16); setbits32(&denali_phy[675], (0x3 << 2) << 16); setbits32(&denali_phy[803], (0x3 << 2) << 16); } else { /* phy_sw_master_mode_X PHY_86/214/342/470 4bits offset_8 */ clrbits32(&denali_phy[86], (0x3 << 2) << 8); clrbits32(&denali_phy[214], (0x3 << 2) << 8); clrbits32(&denali_phy[342], (0x3 << 2) << 8); clrbits32(&denali_phy[470], (0x3 << 2) << 8); /* phy_adrctl_sw_master_mode PHY_547/675/803 4bits offset_16 */ clrbits32(&denali_phy[547], (0x3 << 2) << 16); clrbits32(&denali_phy[675], (0x3 << 2) << 16); clrbits32(&denali_phy[803], (0x3 << 2) << 16); } } static void set_memory_map(u32 channel, const struct rk3399_sdram_params *params) { const struct rk3399_sdram_channel *sdram_ch = ¶ms->ch[channel]; u32 *denali_ctl = rk3399_ddr_pctl[channel]->denali_ctl; u32 *denali_pi = rk3399_ddr_pi[channel]->denali_pi; u32 cs_map; u32 reduc; u32 row; if ((sdram_ch->ddrconfig < 2) || (sdram_ch->ddrconfig == 4)) row = 16; else if (sdram_ch->ddrconfig == 3) row = 14; else row = 15; cs_map = (sdram_ch->rank > 1) ? 3 : 1; reduc = (sdram_ch->bw == 2) ? 0 : 1; clrsetbits32(&denali_ctl[191], 0xF, (12 - sdram_ch->col)); clrsetbits32(&denali_ctl[190], (0x3 << 16) | (0x7 << 24), ((3 - sdram_ch->bk) << 16) | ((16 - row) << 24)); clrsetbits32(&denali_ctl[196], 0x3 | (1 << 16), cs_map | (reduc << 16)); /* PI_199 PI_COL_DIFF:RW:0:4 */ clrsetbits32(&denali_pi[199], 0xF, (12 - sdram_ch->col)); /* PI_155 PI_ROW_DIFF:RW:24:3 PI_BANK_DIFF:RW:16:2 */ clrsetbits32(&denali_pi[155], (0x3 << 16) | (0x7 << 24), ((3 - sdram_ch->bk) << 16) | ((16 - row) << 24)); /* PI_41 PI_CS_MAP:RW:24:4 */ clrsetbits32(&denali_pi[41], 0xf << 24, cs_map << 24); if ((sdram_ch->rank == 1) && (params->dramtype == DDR3)) write32(&denali_pi[34], 0x2EC7FFFF); } static void set_ds_odt(u32 channel, const struct rk3399_sdram_params *params) { u32 *denali_phy = rk3399_ddr_publ[channel]->denali_phy; u32 tsel_idle_en, tsel_wr_en, tsel_rd_en; u32 tsel_idle_select_p, tsel_wr_select_p, tsel_rd_select_p; u32 ca_tsel_wr_select_p, ca_tsel_wr_select_n; u32 tsel_idle_select_n, tsel_wr_select_n, tsel_rd_select_n; u32 reg_value; if (params->dramtype == LPDDR4) { tsel_rd_select_p = PHY_DRV_ODT_Hi_Z; tsel_rd_select_n = PHY_DRV_ODT_240; tsel_wr_select_p = PHY_DRV_ODT_40; tsel_wr_select_n = PHY_DRV_ODT_40; tsel_idle_select_p = PHY_DRV_ODT_Hi_Z; tsel_idle_select_n = PHY_DRV_ODT_240; ca_tsel_wr_select_p = PHY_DRV_ODT_40; ca_tsel_wr_select_n = PHY_DRV_ODT_40; } else if (params->dramtype == LPDDR3) { tsel_rd_select_p = PHY_DRV_ODT_240; tsel_rd_select_n = PHY_DRV_ODT_Hi_Z; tsel_wr_select_p = PHY_DRV_ODT_34_3; tsel_wr_select_n = PHY_DRV_ODT_34_3; tsel_idle_select_p = PHY_DRV_ODT_240; tsel_idle_select_n = PHY_DRV_ODT_Hi_Z; ca_tsel_wr_select_p = PHY_DRV_ODT_48; ca_tsel_wr_select_n = PHY_DRV_ODT_48; } else { tsel_rd_select_p = PHY_DRV_ODT_240; tsel_rd_select_n = PHY_DRV_ODT_240; tsel_wr_select_p = PHY_DRV_ODT_34_3; tsel_wr_select_n = PHY_DRV_ODT_34_3; tsel_idle_select_p = PHY_DRV_ODT_240; tsel_idle_select_n = PHY_DRV_ODT_240; ca_tsel_wr_select_p = PHY_DRV_ODT_34_3; ca_tsel_wr_select_n = PHY_DRV_ODT_34_3; } if (params->odt == 1) tsel_rd_en = 1; else tsel_rd_en = 0; tsel_wr_en = 0; tsel_idle_en = 0; /* * phy_dq_tsel_select_X 24bits DENALI_PHY_6/134/262/390 offset_0 * sets termination values for read/idle cycles and drive strength * for write cycles for DQ/DM */ reg_value = tsel_rd_select_n | (tsel_rd_select_p << 0x4) | (tsel_wr_select_n << 8) | (tsel_wr_select_p << 12) | (tsel_idle_select_n << 16) | (tsel_idle_select_p << 20); clrsetbits32(&denali_phy[6], 0xffffff, reg_value); clrsetbits32(&denali_phy[134], 0xffffff, reg_value); clrsetbits32(&denali_phy[262], 0xffffff, reg_value); clrsetbits32(&denali_phy[390], 0xffffff, reg_value); /* * phy_dqs_tsel_select_X 24bits DENALI_PHY_7/135/263/391 offset_0 * sets termination values for read/idle cycles and drive strength * for write cycles for DQS */ clrsetbits32(&denali_phy[7], 0xffffff, reg_value); clrsetbits32(&denali_phy[135], 0xffffff, reg_value); clrsetbits32(&denali_phy[263], 0xffffff, reg_value); clrsetbits32(&denali_phy[391], 0xffffff, reg_value); /* phy_adr_tsel_select_ 8bits DENALI_PHY_544/672/800 offset_0 */ reg_value = ca_tsel_wr_select_n | (ca_tsel_wr_select_p << 0x4); clrsetbits32(&denali_phy[544], 0xff, reg_value); clrsetbits32(&denali_phy[672], 0xff, reg_value); clrsetbits32(&denali_phy[800], 0xff, reg_value); /* phy_pad_addr_drive 8bits DENALI_PHY_928 offset_0 */ clrsetbits32(&denali_phy[928], 0xff, reg_value); /* phy_pad_rst_drive 8bits DENALI_PHY_937 offset_0 */ clrsetbits32(&denali_phy[937], 0xff, reg_value); /* phy_pad_cke_drive 8bits DENALI_PHY_935 offset_0 */ clrsetbits32(&denali_phy[935], 0xff, reg_value); /* phy_pad_cs_drive 8bits DENALI_PHY_939 offset_0 */ clrsetbits32(&denali_phy[939], 0xff, reg_value); /* phy_pad_clk_drive 8bits DENALI_PHY_929 offset_0 */ clrsetbits32(&denali_phy[929], 0xff, reg_value); /* phy_pad_fdbk_drive 23bit DENALI_PHY_924/925 */ clrsetbits32(&denali_phy[924], 0xff, tsel_wr_select_n | (tsel_wr_select_p << 4)); clrsetbits32(&denali_phy[925], 0xff, tsel_rd_select_n | (tsel_rd_select_p << 4)); /* phy_dq_tsel_enable_X 3bits DENALI_PHY_5/133/261/389 offset_16 */ reg_value = (tsel_rd_en | (tsel_wr_en << 1) | (tsel_idle_en << 2)) << 16; clrsetbits32(&denali_phy[5], 0x7 << 16, reg_value); clrsetbits32(&denali_phy[133], 0x7 << 16, reg_value); clrsetbits32(&denali_phy[261], 0x7 << 16, reg_value); clrsetbits32(&denali_phy[389], 0x7 << 16, reg_value); /* phy_dqs_tsel_enable_X 3bits DENALI_PHY_6/134/262/390 offset_24 */ reg_value = (tsel_rd_en | (tsel_wr_en << 1) | (tsel_idle_en << 2)) << 24; clrsetbits32(&denali_phy[6], 0x7 << 24, reg_value); clrsetbits32(&denali_phy[134], 0x7 << 24, reg_value); clrsetbits32(&denali_phy[262], 0x7 << 24, reg_value); clrsetbits32(&denali_phy[390], 0x7 << 24, reg_value); /* phy_adr_tsel_enable_ 1bit DENALI_PHY_518/646/774 offset_8 */ reg_value = tsel_wr_en << 8; clrsetbits32(&denali_phy[518], 0x1 << 8, reg_value); clrsetbits32(&denali_phy[646], 0x1 << 8, reg_value); clrsetbits32(&denali_phy[774], 0x1 << 8, reg_value); /* phy_pad_addr_term tsel 1bit DENALI_PHY_933 offset_17 */ reg_value = tsel_wr_en << 17; clrsetbits32(&denali_phy[933], 0x1 << 17, reg_value); /* * pad_rst/cke/cs/clk_term tsel 1bits * DENALI_PHY_938/936/940/934 offset_17 */ clrsetbits32(&denali_phy[938], 0x1 << 17, reg_value); clrsetbits32(&denali_phy[936], 0x1 << 17, reg_value); clrsetbits32(&denali_phy[940], 0x1 << 17, reg_value); clrsetbits32(&denali_phy[934], 0x1 << 17, reg_value); /* phy_pad_fdbk_term 1bit DENALI_PHY_930 offset_17 */ clrsetbits32(&denali_phy[930], 0x1 << 17, reg_value); } static void phy_io_config(u32 channel, const struct rk3399_sdram_params *params) { u32 *denali_phy = rk3399_ddr_publ[channel]->denali_phy; u32 vref_mode_dq, vref_value_dq, vref_mode_ac, vref_value_ac; u32 mode_sel = 0; u32 reg_value; u32 drv_value, odt_value; u32 speed; /* vref setting */ if (params->dramtype == LPDDR4) { /* LPDDR4 */ vref_mode_dq = 0x6; vref_value_dq = 0x1f; vref_mode_ac = 0x6; vref_value_ac = 0x1f; } else if (params->dramtype == LPDDR3) { if (params->odt == 1) { vref_mode_dq = 0x5; /* LPDDR3 ODT */ drv_value = (read32(&denali_phy[6]) >> 12) & 0xf; odt_value = (read32(&denali_phy[6]) >> 4) & 0xf; if (drv_value == PHY_DRV_ODT_48) { switch (odt_value) { case PHY_DRV_ODT_240: vref_value_dq = 0x16; break; case PHY_DRV_ODT_120: vref_value_dq = 0x26; break; case PHY_DRV_ODT_60: vref_value_dq = 0x36; break; default: die("Halting: Invalid ODT value.\n"); } } else if (drv_value == PHY_DRV_ODT_40) { switch (odt_value) { case PHY_DRV_ODT_240: vref_value_dq = 0x19; break; case PHY_DRV_ODT_120: vref_value_dq = 0x23; break; case PHY_DRV_ODT_60: vref_value_dq = 0x31; break; default: die("Halting: Invalid ODT value.\n"); } } else if (drv_value == PHY_DRV_ODT_34_3) { switch (odt_value) { case PHY_DRV_ODT_240: vref_value_dq = 0x17; break; case PHY_DRV_ODT_120: vref_value_dq = 0x20; break; case PHY_DRV_ODT_60: vref_value_dq = 0x2e; break; default: die("Halting: Invalid ODT value.\n"); } } else { die("Halting: Invalid DRV value.\n"); } } else { vref_mode_dq = 0x2; /* LPDDR3 */ vref_value_dq = 0x1f; } vref_mode_ac = 0x2; vref_value_ac = 0x1f; } else if (params->dramtype == DDR3) { /* DDR3L */ vref_mode_dq = 0x1; vref_value_dq = 0x1f; vref_mode_ac = 0x1; vref_value_ac = 0x1f; } else { die("Halting: Unknown DRAM type.\n"); } reg_value = (vref_mode_dq << 9) | (0x1 << 8) | vref_value_dq; /* PHY_913 PHY_PAD_VREF_CTRL_DQ_0 12bits offset_8 */ clrsetbits32(&denali_phy[913], 0xfff << 8, reg_value << 8); /* PHY_914 PHY_PAD_VREF_CTRL_DQ_1 12bits offset_0 */ clrsetbits32(&denali_phy[914], 0xfff, reg_value); /* PHY_914 PHY_PAD_VREF_CTRL_DQ_2 12bits offset_16 */ clrsetbits32(&denali_phy[914], 0xfff << 16, reg_value << 16); /* PHY_915 PHY_PAD_VREF_CTRL_DQ_3 12bits offset_0 */ clrsetbits32(&denali_phy[915], 0xfff, reg_value); reg_value = (vref_mode_ac << 9) | (0x1 << 8) | vref_value_ac; /* PHY_915 PHY_PAD_VREF_CTRL_AC 12bits offset_16 */ clrsetbits32(&denali_phy[915], 0xfff << 16, reg_value << 16); if (params->dramtype == LPDDR4) mode_sel = 0x6; else if (params->dramtype == LPDDR3) mode_sel = 0x0; else if (params->dramtype == DDR3) mode_sel = 0x1; /* PHY_924 PHY_PAD_FDBK_DRIVE */ clrsetbits32(&denali_phy[924], 0x7 << 15, mode_sel << 15); /* PHY_926 PHY_PAD_DATA_DRIVE */ clrsetbits32(&denali_phy[926], 0x7 << 6, mode_sel << 6); /* PHY_927 PHY_PAD_DQS_DRIVE */ clrsetbits32(&denali_phy[927], 0x7 << 6, mode_sel << 6); /* PHY_928 PHY_PAD_ADDR_DRIVE */ clrsetbits32(&denali_phy[928], 0x7 << 14, mode_sel << 14); /* PHY_929 PHY_PAD_CLK_DRIVE */ clrsetbits32(&denali_phy[929], 0x7 << 14, mode_sel << 14); /* PHY_935 PHY_PAD_CKE_DRIVE */ clrsetbits32(&denali_phy[935], 0x7 << 14, mode_sel << 14); /* PHY_937 PHY_PAD_RST_DRIVE */ clrsetbits32(&denali_phy[937], 0x7 << 14, mode_sel << 14); /* PHY_939 PHY_PAD_CS_DRIVE */ clrsetbits32(&denali_phy[939], 0x7 << 14, mode_sel << 14); /* speed setting */ if (params->ddr_freq < 400 * MHz) speed = 0x0; else if (params->ddr_freq < 800 * MHz) speed = 0x1; else if (params->ddr_freq < 1200 * MHz) speed = 0x2; else speed = 0x3; /* PHY_924 PHY_PAD_FDBK_DRIVE */ clrsetbits32(&denali_phy[924], 0x3 << 21, speed << 21); /* PHY_926 PHY_PAD_DATA_DRIVE */ clrsetbits32(&denali_phy[926], 0x3 << 9, speed << 9); /* PHY_927 PHY_PAD_DQS_DRIVE */ clrsetbits32(&denali_phy[927], 0x3 << 9, speed << 9); /* PHY_928 PHY_PAD_ADDR_DRIVE */ clrsetbits32(&denali_phy[928], 0x3 << 17, speed << 17); /* PHY_929 PHY_PAD_CLK_DRIVE */ clrsetbits32(&denali_phy[929], 0x3 << 17, speed << 17); /* PHY_935 PHY_PAD_CKE_DRIVE */ clrsetbits32(&denali_phy[935], 0x3 << 17, speed << 17); /* PHY_937 PHY_PAD_RST_DRIVE */ clrsetbits32(&denali_phy[937], 0x3 << 17, speed << 17); /* PHY_939 PHY_PAD_CS_DRIVE */ clrsetbits32(&denali_phy[939], 0x3 << 17, speed << 17); } static int pctl_cfg(u32 channel, const struct rk3399_sdram_params *params) { u32 *denali_ctl = rk3399_ddr_pctl[channel]->denali_ctl; u32 *denali_pi = rk3399_ddr_pi[channel]->denali_pi; u32 *denali_phy = rk3399_ddr_publ[channel]->denali_phy; const u32 *params_ctl = params->pctl_regs.denali_ctl; const u32 *params_phy = params->phy_regs.denali_phy; u32 tmp, tmp1, tmp2; u32 pwrup_srefresh_exit; struct stopwatch sw; /* * work around controller bug: * Do not program DRAM_CLASS until NO_PHY_IND_TRAIN_INT is programmed */ copy_to_reg(&denali_ctl[1], ¶ms_ctl[1], sizeof(struct rk3399_ddr_pctl_regs) - 4); write32(&denali_ctl[0], params_ctl[0]); copy_to_reg(denali_pi, ¶ms->pi_regs.denali_pi[0], sizeof(struct rk3399_ddr_pi_regs)); /* rank count need to set for init */ set_memory_map(channel, params); write32(&denali_phy[910], params->phy_regs.denali_phy[910]); write32(&denali_phy[911], params->phy_regs.denali_phy[911]); write32(&denali_phy[912], params->phy_regs.denali_phy[912]); pwrup_srefresh_exit = read32(&denali_ctl[68]) & PWRUP_SREFRESH_EXIT; clrbits32(&denali_ctl[68], PWRUP_SREFRESH_EXIT); /* PHY_DLL_RST_EN */ clrsetbits32(&denali_phy[957], 0x3 << 24, 1 << 24); setbits32(&denali_pi[0], START); setbits32(&denali_ctl[0], START); while (1) { tmp = read32(&denali_phy[920]); tmp1 = read32(&denali_phy[921]); tmp2 = read32(&denali_phy[922]); if ((((tmp >> 16) & 0x1) == 0x1) && (((tmp1 >> 16) & 0x1) == 0x1) && (((tmp1 >> 0) & 0x1) == 0x1) && (((tmp2 >> 0) & 0x1) == 0x1)) break; } copy_to_reg(&denali_phy[896], ¶ms_phy[896], (958 - 895) * 4); copy_to_reg(&denali_phy[0], ¶ms_phy[0], (90 - 0 + 1) * 4); copy_to_reg(&denali_phy[128], ¶ms_phy[128], (218 - 128 + 1) * 4); copy_to_reg(&denali_phy[256], ¶ms_phy[256], (346 - 256 + 1) * 4); copy_to_reg(&denali_phy[384], ¶ms_phy[384], (474 - 384 + 1) * 4); copy_to_reg(&denali_phy[512], ¶ms_phy[512], (549 - 512 + 1) * 4); copy_to_reg(&denali_phy[640], ¶ms_phy[640], (677 - 640 + 1) * 4); copy_to_reg(&denali_phy[768], ¶ms_phy[768], (805 - 768 + 1) * 4); set_ds_odt(channel, params); /* * phy_dqs_tsel_wr_timing_X 8bits DENALI_PHY_84/212/340/468 offset_8 * dqs_tsel_wr_end[7:4] add Half cycle */ tmp = (read32(&denali_phy[84]) >> 8) & 0xff; clrsetbits32(&denali_phy[84], 0xff << 8, (tmp + 0x10) << 8); tmp = (read32(&denali_phy[212]) >> 8) & 0xff; clrsetbits32(&denali_phy[212], 0xff << 8, (tmp + 0x10) << 8); tmp = (read32(&denali_phy[340]) >> 8) & 0xff; clrsetbits32(&denali_phy[340], 0xff << 8, (tmp + 0x10) << 8); tmp = (read32(&denali_phy[468]) >> 8) & 0xff; clrsetbits32(&denali_phy[468], 0xff << 8, (tmp + 0x10) << 8); /* * phy_dqs_tsel_wr_timing_X 8bits DENALI_PHY_83/211/339/467 offset_8 * dq_tsel_wr_end[7:4] add Half cycle */ tmp = (read32(&denali_phy[83]) >> 16) & 0xff; clrsetbits32(&denali_phy[83], 0xff << 16, (tmp + 0x10) << 16); tmp = (read32(&denali_phy[211]) >> 16) & 0xff; clrsetbits32(&denali_phy[211], 0xff << 16, (tmp + 0x10) << 16); tmp = (read32(&denali_phy[339]) >> 16) & 0xff; clrsetbits32(&denali_phy[339], 0xff << 16, (tmp + 0x10) << 16); tmp = (read32(&denali_phy[467]) >> 16) & 0xff; clrsetbits32(&denali_phy[467], 0xff << 16, (tmp + 0x10) << 16); phy_io_config(channel, params); /* PHY_DLL_RST_EN */ clrsetbits32(&denali_phy[957], 0x3 << 24, 0x2 << 24); /* FIXME: need to care ERROR bit */ stopwatch_init_msecs_expire(&sw, 100); while (!(read32(&denali_ctl[203]) & (1 << 3))) { if (stopwatch_expired(&sw)) return -1; } clrsetbits32(&denali_ctl[68], PWRUP_SREFRESH_EXIT, pwrup_srefresh_exit); return 0; } static void select_per_cs_training_index(u32 channel, u32 rank) { u32 *denali_phy = rk3399_ddr_publ[channel]->denali_phy; /* PHY_84 PHY_PER_CS_TRAINING_EN_0 1bit offset_16 */ if ((read32(&denali_phy[84])>>16) & 1) { /* * PHY_8/136/264/392 * phy_per_cs_training_index_X 1bit offset_24 */ clrsetbits32(&denali_phy[8], 0x1 << 24, rank << 24); clrsetbits32(&denali_phy[136], 0x1 << 24, rank << 24); clrsetbits32(&denali_phy[264], 0x1 << 24, rank << 24); clrsetbits32(&denali_phy[392], 0x1 << 24, rank << 24); } } static void override_write_leveling_value(u32 channel) { u32 *denali_ctl = rk3399_ddr_pctl[channel]->denali_ctl; u32 *denali_phy = rk3399_ddr_publ[channel]->denali_phy; u32 byte; /* PHY_896 PHY_FREQ_SEL_MULTICAST_EN 1bit offset_0 */ setbits32(&denali_phy[896], 1); /* * PHY_8/136/264/392 * phy_per_cs_training_multicast_en_X 1bit offset_16 */ clrsetbits32(&denali_phy[8], 0x1 << 16, 1 << 16); clrsetbits32(&denali_phy[136], 0x1 << 16, 1 << 16); clrsetbits32(&denali_phy[264], 0x1 << 16, 1 << 16); clrsetbits32(&denali_phy[392], 0x1 << 16, 1 << 16); for (byte = 0; byte < 4; byte++) clrsetbits32(&denali_phy[63 + (128 * byte)], 0xffff << 16, 0x200 << 16); /* PHY_896 PHY_FREQ_SEL_MULTICAST_EN 1bit offset_0 */ clrbits32(&denali_phy[896], 1); /* CTL_200 ctrlupd_req 1bit offset_8 */ clrsetbits32(&denali_ctl[200], 0x1 << 8, 0x1 << 8); } static u32 get_rank_mask(u32 channel, const struct rk3399_sdram_params *params) { const u32 rank = params->ch[channel].rank; /* required rank mask is different for LPDDR4 */ if (params->dramtype == LPDDR4) return (rank == 1) ? 0x5 : 0xf; else return (rank == 1) ? 0x1 : 0x3; } static int data_training_ca(u32 channel, const struct rk3399_sdram_params *params) { u32 *denali_pi = rk3399_ddr_pi[channel]->denali_pi; u32 *denali_phy = rk3399_ddr_publ[channel]->denali_phy; u32 obs_0, obs_1, obs_2; const u32 rank_mask = get_rank_mask(channel, params); u32 i, tmp; /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ write32(&denali_pi[175], 0x00003f7c); for (i = 0; i < MAX_RANKS_PER_CHANNEL; i++) { if (!(rank_mask & (1 << i))) continue; select_per_cs_training_index(channel, i); /* PI_100 PI_CALVL_EN:RW:8:2 */ clrsetbits32(&denali_pi[100], 0x3 << 8, 0x2 << 8); /* PI_92 PI_CALVL_REQ:WR:16:1,PI_CALVL_CS:RW:24:2 */ clrsetbits32(&denali_pi[92], (0x1 << 16) | (0x3 << 24), (0x1 << 16) | (i << 24)); while (1) { /* PI_174 PI_INT_STATUS:RD:8:18 */ tmp = read32(&denali_pi[174]) >> 8; /* * check status obs * PHY_532/660/789 phy_adr_calvl_obs1_:0:32 */ obs_0 = read32(&denali_phy[532]); obs_1 = read32(&denali_phy[660]); obs_2 = read32(&denali_phy[788]); if (((obs_0 >> 30) & 0x3) || ((obs_1 >> 30) & 0x3) || ((obs_2 >> 30) & 0x3)) return -1; if ((((tmp >> 11) & 0x1) == 0x1) && (((tmp >> 13) & 0x1) == 0x1) && (((tmp >> 5) & 0x1) == 0x0)) break; else if (((tmp >> 5) & 0x1) == 0x1) return -1; } /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ write32(&denali_pi[175], 0x00003f7c); } clrbits32(&denali_pi[100], 0x3 << 8); return 0; } static int data_training_wl(u32 channel, const struct rk3399_sdram_params *params) { u32 *denali_pi = rk3399_ddr_pi[channel]->denali_pi; u32 *denali_phy = rk3399_ddr_publ[channel]->denali_phy; u32 obs_0, obs_1, obs_2, obs_3; u32 rank = params->ch[channel].rank; u32 i, tmp; /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ write32(&denali_pi[175], 0x00003f7c); for (i = 0; i < rank; i++) { select_per_cs_training_index(channel, i); /* PI_60 PI_WRLVL_EN:RW:8:2 */ clrsetbits32(&denali_pi[60], 0x3 << 8, 0x2 << 8); /* PI_59 PI_WRLVL_REQ:WR:8:1,PI_WRLVL_CS:RW:16:2 */ clrsetbits32(&denali_pi[59], (0x1 << 8) | (0x3 << 16), (0x1 << 8) | (i << 16)); while (1) { /* PI_174 PI_INT_STATUS:RD:8:18 */ tmp = read32(&denali_pi[174]) >> 8; /* * check status obs, if error maybe can not * get leveling done PHY_40/168/296/424 * phy_wrlvl_status_obs_X:0:13 */ obs_0 = read32(&denali_phy[40]); obs_1 = read32(&denali_phy[168]); obs_2 = read32(&denali_phy[296]); obs_3 = read32(&denali_phy[424]); if (((obs_0 >> 12) & 0x1) || ((obs_1 >> 12) & 0x1) || ((obs_2 >> 12) & 0x1) || ((obs_3 >> 12) & 0x1)) return -1; if ((((tmp >> 10) & 0x1) == 0x1) && (((tmp >> 13) & 0x1) == 0x1) && (((tmp >> 4) & 0x1) == 0x0)) break; else if (((tmp >> 4) & 0x1) == 0x1) return -1; } /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ write32(&denali_pi[175], 0x00003f7c); } override_write_leveling_value(channel); clrbits32(&denali_pi[60], 0x3 << 8); return 0; } static int data_training_rg(u32 channel, const struct rk3399_sdram_params *params) { u32 *denali_pi = rk3399_ddr_pi[channel]->denali_pi; u32 *denali_phy = rk3399_ddr_publ[channel]->denali_phy; u32 rank = params->ch[channel].rank; u32 obs_0, obs_1, obs_2, obs_3; u32 reg_value = 0; u32 i, tmp; /* * The differential signal of DQS needs to keep low level * before gate training. RPULL will connect 4Kn from PADP * to VSS and a 4Kn from PADN to VDDQ to ensure it. * But if it has PHY side ODT connect at this time, * it will change the DQS signal level. So disable PHY * side ODT before gate training and restore ODT state * after gate training. */ if (params->dramtype != LPDDR4) { reg_value = (read32(&denali_phy[6]) >> 24) & 0x7; /* * phy_dqs_tsel_enable_X 3bits * DENALI_PHY_6/134/262/390 offset_24 */ clrbits32(&denali_phy[6], 0x7 << 24); clrbits32(&denali_phy[134], 0x7 << 24); clrbits32(&denali_phy[262], 0x7 << 24); clrbits32(&denali_phy[390], 0x7 << 24); } /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ write32(&denali_pi[175], 0x00003f7c); for (i = 0; i < rank; i++) { select_per_cs_training_index(channel, i); /* PI_80 PI_RDLVL_GATE_EN:RW:24:2 */ clrsetbits32(&denali_pi[80], 0x3 << 24, 0x2 << 24); /* * PI_74 PI_RDLVL_GATE_REQ:WR:16:1 * PI_RDLVL_CS:RW:24:2 */ clrsetbits32(&denali_pi[74], (0x1 << 16) | (0x3 << 24), (0x1 << 16) | (i << 24)); while (1) { /* PI_174 PI_INT_STATUS:RD:8:18 */ tmp = read32(&denali_pi[174]) >> 8; /* * check status obs * PHY_43/171/299/427 * PHY_GTLVL_STATUS_OBS_x:16:8 */ obs_0 = read32(&denali_phy[43]); obs_1 = read32(&denali_phy[171]); obs_2 = read32(&denali_phy[299]); obs_3 = read32(&denali_phy[427]); if (((obs_0 >> (16 + 6)) & 0x3) || ((obs_1 >> (16 + 6)) & 0x3) || ((obs_2 >> (16 + 6)) & 0x3) || ((obs_3 >> (16 + 6)) & 0x3)) return -1; if ((((tmp >> 9) & 0x1) == 0x1) && (((tmp >> 13) & 0x1) == 0x1) && (((tmp >> 3) & 0x1) == 0x0)) break; else if (((tmp >> 3) & 0x1) == 0x1) return -1; } /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ write32(&denali_pi[175], 0x00003f7c); } clrbits32(&denali_pi[80], 0x3 << 24); if (params->dramtype != LPDDR4) { /* * phy_dqs_tsel_enable_X 3bits * DENALI_PHY_6/134/262/390 offset_24 */ tmp = reg_value << 24; clrsetbits32(&denali_phy[6], 0x7 << 24, tmp); clrsetbits32(&denali_phy[134], 0x7 << 24, tmp); clrsetbits32(&denali_phy[262], 0x7 << 24, tmp); clrsetbits32(&denali_phy[390], 0x7 << 24, tmp); } return 0; } static int data_training_rl(u32 channel, const struct rk3399_sdram_params *params) { u32 rank = params->ch[channel].rank; u32 i, tmp; u32 *denali_pi = rk3399_ddr_pi[channel]->denali_pi; /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ write32(&denali_pi[175], 0x00003f7c); for (i = 0; i < rank; i++) { select_per_cs_training_index(channel, i); /* PI_80 PI_RDLVL_EN:RW:16:2 */ clrsetbits32(&denali_pi[80], 0x3 << 16, 0x2 << 16); /* PI_74 PI_RDLVL_REQ:WR:8:1,PI_RDLVL_CS:RW:24:2 */ clrsetbits32(&denali_pi[74], (0x1 << 8) | (0x3 << 24), (0x1 << 8) | (i << 24)); while (1) { /* PI_174 PI_INT_STATUS:RD:8:18 */ tmp = read32(&denali_pi[174]) >> 8; /* * make sure status obs not report error bit * PHY_46/174/302/430 * phy_rdlvl_status_obs_X:16:8 */ if ((((tmp >> 8) & 0x1) == 0x1) && (((tmp >> 13) & 0x1) == 0x1) && (((tmp >> 2) & 0x1) == 0x0)) break; else if (((tmp >> 2) & 0x1) == 0x1) return -1; } /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ write32(&denali_pi[175], 0x00003f7c); } clrbits32(&denali_pi[80], 0x3 << 16); return 0; } static int data_training_wdql(u32 channel, const struct rk3399_sdram_params *params) { u32 *denali_pi = rk3399_ddr_pi[channel]->denali_pi; const u32 rank_mask = get_rank_mask(channel, params); u32 i, tmp; /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ write32(&denali_pi[175], 0x00003f7c); for (i = 0; i < MAX_RANKS_PER_CHANNEL; i++) { if (!(rank_mask & (1 << i))) continue; select_per_cs_training_index(channel, i); /* * disable PI_WDQLVL_VREF_EN before wdq leveling? * PI_181 PI_WDQLVL_VREF_EN:RW:8:1 */ clrbits32(&denali_pi[181], 0x1 << 8); /* PI_124 PI_WDQLVL_EN:RW:16:2 */ clrsetbits32(&denali_pi[124], 0x3 << 16, 0x2 << 16); /* PI_121 PI_WDQLVL_REQ:WR:8:1,PI_WDQLVL_CS:RW:16:2 */ clrsetbits32(&denali_pi[121], (0x1 << 8) | (0x3 << 16), (0x1 << 8) | (i << 16)); while (1) { /* PI_174 PI_INT_STATUS:RD:8:18 */ tmp = read32(&denali_pi[174]) >> 8; if ((((tmp >> 12) & 0x1) == 0x1) && (((tmp >> 13) & 0x1) == 0x1) && (((tmp >> 6) & 0x1) == 0x0)) break; else if (((tmp >> 6) & 0x1) == 0x1) return -1; } /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ write32(&denali_pi[175], 0x00003f7c); } clrbits32(&denali_pi[124], 0x3 << 16); return 0; } static int data_training(u32 channel, const struct rk3399_sdram_params *params, u32 training_flag) { u32 *denali_phy = rk3399_ddr_publ[channel]->denali_phy; int ret; /* PHY_927 PHY_PAD_DQS_DRIVE RPULL offset_22 */ setbits32(&denali_phy[927], (1 << 22)); if (training_flag == PI_FULL_TRAINING) { if (params->dramtype == LPDDR4) { training_flag = PI_CA_TRAINING | PI_WRITE_LEVELING | PI_READ_GATE_TRAINING | PI_READ_LEVELING | PI_WDQ_LEVELING; } else if (params->dramtype == LPDDR3) { training_flag = PI_CA_TRAINING | PI_WRITE_LEVELING | PI_READ_GATE_TRAINING; } else if (params->dramtype == DDR3) { training_flag = PI_WRITE_LEVELING | PI_READ_GATE_TRAINING | PI_READ_LEVELING; } } /* ca training(LPDDR4,LPDDR3 support) */ if ((training_flag & PI_CA_TRAINING) == PI_CA_TRAINING) { ret = data_training_ca(channel, params); if (ret) { printk(BIOS_ERR, "Channel %d CA training failed\n", channel); return ret; } } /* write leveling(LPDDR4,LPDDR3,DDR3 support) */ if ((training_flag & PI_WRITE_LEVELING) == PI_WRITE_LEVELING) { ret = data_training_wl(channel, params); if (ret) { printk(BIOS_ERR, "Channel %d WL training failed\n", channel); return ret; } } /* read gate training(LPDDR4,LPDDR3,DDR3 support) */ if ((training_flag & PI_READ_GATE_TRAINING) == PI_READ_GATE_TRAINING) { ret = data_training_rg(channel, params); if (ret) { printk(BIOS_ERR, "Channel %d RG training failed\n", channel); return ret; } } /* read leveling(LPDDR4,LPDDR3,DDR3 support) */ if ((training_flag & PI_READ_LEVELING) == PI_READ_LEVELING) { ret = data_training_rl(channel, params); if (ret) { printk(BIOS_ERR, "Channel %d RL training failed\n", channel); return ret; } } /* wdq leveling(LPDDR4 support) */ if ((training_flag & PI_WDQ_LEVELING) == PI_WDQ_LEVELING) { ret = data_training_wdql(channel, params); if (ret) { printk(BIOS_ERR, "Channel %d WDQL training failed\n", channel); return ret; } } /* PHY_927 PHY_PAD_DQS_DRIVE RPULL offset_22 */ clrbits32(&denali_phy[927], (1 << 22)); return 0; } static void set_ddrconfig(const struct rk3399_sdram_params *params, unsigned char channel, u32 ddrconfig) { /* only need to set ddrconfig */ struct rk3399_msch_regs *ddr_msch_regs = rk3399_msch[channel]; unsigned int cs0_cap = 0; unsigned int cs1_cap = 0; cs0_cap = (1 << (params->ch[channel].cs0_row + params->ch[channel].col + params->ch[channel].bk + params->ch[channel].bw - 20)); if (params->ch[channel].rank > 1) cs1_cap = cs0_cap >> (params->ch[channel].cs0_row - params->ch[channel].cs1_row); if (params->ch[channel].row_3_4) { cs0_cap = cs0_cap * 3 / 4; cs1_cap = cs1_cap * 3 / 4; } write32(&ddr_msch_regs->ddrconf, ddrconfig | (ddrconfig << 8)); write32(&ddr_msch_regs->ddrsize, ((cs0_cap / 32) & 0xff) | (((cs1_cap / 32) & 0xff) << 8)); } static void dram_all_config(const struct rk3399_sdram_params *params) { u32 sys_reg = 0; unsigned int channel; unsigned int use; sys_reg |= SYS_REG_ENC_DDRTYPE(params->dramtype); sys_reg |= SYS_REG_ENC_NUM_CH(params->num_channels); for (channel = 0, use = 0; (use < params->num_channels) && (channel < 2); channel++) { const struct rk3399_sdram_channel *info = ¶ms->ch[channel]; struct rk3399_msch_regs *ddr_msch_regs; const struct rk3399_msch_timings *noc_timing; if (params->ch[channel].col == 0) continue; use++; sys_reg |= SYS_REG_ENC_ROW_3_4(info->row_3_4, channel); sys_reg |= SYS_REG_ENC_CHINFO(channel); sys_reg |= SYS_REG_ENC_RANK(info->rank, channel); sys_reg |= SYS_REG_ENC_COL(info->col, channel); sys_reg |= SYS_REG_ENC_BK(info->bk, channel); sys_reg |= SYS_REG_ENC_CS0_ROW(info->cs0_row, channel); if (params->ch[channel].rank > 1) sys_reg |= SYS_REG_ENC_CS1_ROW(info->cs1_row, channel); sys_reg |= SYS_REG_ENC_BW(info->bw, channel); sys_reg |= SYS_REG_ENC_DBW(info->dbw, channel); ddr_msch_regs = rk3399_msch[channel]; noc_timing = ¶ms->ch[channel].noc_timings; write32(&ddr_msch_regs->ddrtiminga0.d32, noc_timing->ddrtiminga0.d32); write32(&ddr_msch_regs->ddrtimingb0.d32, noc_timing->ddrtimingb0.d32); write32(&ddr_msch_regs->ddrtimingc0.d32, noc_timing->ddrtimingc0.d32); write32(&ddr_msch_regs->devtodev0.d32, noc_timing->devtodev0.d32); write32(&ddr_msch_regs->ddrmode.d32, noc_timing->ddrmode.d32); /* rank 1 memory clock disable (dfi_dram_clk_disable = 1) */ if (params->ch[channel].rank == 1) setbits32(&rk3399_ddr_pctl[channel]->denali_ctl[276], 1 << 17); } write32(&rk3399_pmugrf->os_reg2, sys_reg); DDR_STRIDE(params->stride); /* reboot hold register set */ write32(&pmucru_ptr->pmucru_rstnhold_con[1], PRESET_SGRF_HOLD(0) | PRESET_GPIO0_HOLD(1) | PRESET_GPIO1_HOLD(1)); clrsetbits32(&cru_ptr->glb_rst_con, 0x3, 0x3); } static void switch_to_phy_index1(const struct rk3399_sdram_params *params) { u32 channel; u32 *denali_phy; struct stopwatch sw; u32 ch_count = params->num_channels; stopwatch_init_msecs_expire(&sw, 100); write32(&rk3399_ddr_cic->cic_ctrl0, RK_CLRSETBITS(0x03 << 4 | 1 << 2 | 1, 1 << 4 | 1 << 2 | 1)); while (!(read32(&rk3399_ddr_cic->cic_status0) & (1 << 2))) { if (stopwatch_expired(&sw)) { printk(BIOS_ERR, "index1 frequency change overtime, reset\n"); board_reset(); } } stopwatch_init_msecs_expire(&sw, 100); write32(&rk3399_ddr_cic->cic_ctrl0, RK_CLRSETBITS(1 << 1, 1 << 1)); while (!(read32(&rk3399_ddr_cic->cic_status0) & (1 << 0))) { if (stopwatch_expired(&sw)) { printk(BIOS_ERR, "index1 frequency done overtime, reset\n"); board_reset(); } } for (channel = 0; channel < ch_count; channel++) { denali_phy = rk3399_ddr_publ[channel]->denali_phy; clrsetbits32(&denali_phy[896], (0x3 << 8) | 1, 1 << 8); if (data_training(channel, params, PI_FULL_TRAINING)) { printk(BIOS_ERR, "index1 training failed, reset\n"); board_reset(); } } } void sdram_init(const struct rk3399_sdram_params *params) { unsigned char dramtype = params->dramtype; unsigned int ddr_freq = params->ddr_freq; int channel; printk(BIOS_INFO, "Starting SDRAM initialization...\n"); if ((dramtype == DDR3 && ddr_freq > 800*MHz) || (dramtype == LPDDR3 && ddr_freq > 933*MHz) || (dramtype == LPDDR4 && ddr_freq > 800*MHz)) die("SDRAM frequency is to high!"); rkclk_configure_ddr(ddr_freq); for (channel = 0; channel < 2; channel++) { phy_pctrl_reset(channel); phy_dll_bypass_set(rk3399_ddr_publ[channel], ddr_freq); if (channel >= params->num_channels) continue; /* * TODO: we need to find the root cause why this * step may fail, before that, we just reset the * system, and start again. */ if (pctl_cfg(channel, params)) { printk(BIOS_ERR, "pctl_cfg fail, reset\n"); board_reset(); } /* LPDDR2/LPDDR3 need to wait DAI complete, max 10us */ if (dramtype == LPDDR3) udelay(10); if (data_training(channel, params, PI_FULL_TRAINING)) { printk(BIOS_ERR, "SDRAM initialization failed, reset\n"); board_reset(); } set_ddrconfig(params, channel, params->ch[channel].ddrconfig); } dram_all_config(params); switch_to_phy_index1(params); printk(BIOS_INFO, "Finish SDRAM initialization...\n"); } size_t sdram_size_mb(void) { u32 rank, col, bk, cs0_row, cs1_row, bw, row_3_4; size_t chipsize_mb = 0; static size_t size_mb = 0; u32 ch; if (!size_mb) { u32 sys_reg = read32(&rk3399_pmugrf->os_reg2); u32 ch_num = SYS_REG_DEC_NUM_CH(sys_reg); for (ch = 0; ch < ch_num; ch++) { rank = SYS_REG_DEC_RANK(sys_reg, ch); col = SYS_REG_DEC_COL(sys_reg, ch); bk = SYS_REG_DEC_BK(sys_reg, ch); cs0_row = SYS_REG_DEC_CS0_ROW(sys_reg, ch); cs1_row = SYS_REG_DEC_CS1_ROW(sys_reg, ch); bw = SYS_REG_DEC_BW(sys_reg, ch); row_3_4 = SYS_REG_DEC_ROW_3_4(sys_reg, ch); chipsize_mb = (1 << (cs0_row + col + bk + bw - 20)); if (rank > 1) chipsize_mb += chipsize_mb >> (cs0_row - cs1_row); if (row_3_4) chipsize_mb = chipsize_mb * 3 / 4; size_mb += chipsize_mb; } /* * we use the 0x00000000~0xf7ffffff space * since 0xf8000000~0xffffffff is soc register space * so we reserve it */ size_mb = MIN(size_mb, 0xf8000000/MiB); } return size_mb; }