/* * This file is part of the coreboot project. * * Copyright 2016 Rockchip Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <assert.h> #include <console/console.h> #include <device/mmio.h> #include <delay.h> #include <soc/addressmap.h> #include <soc/clock.h> #include <soc/grf.h> #include <soc/i2c.h> #include <soc/soc.h> #include <stdint.h> #include <string.h> struct pll_div { u32 refdiv; u32 fbdiv; u32 postdiv1; u32 postdiv2; u32 frac; u32 freq; }; #define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\ .refdiv = _refdiv,\ .fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\ .postdiv1 = _postdiv1, .postdiv2 = _postdiv2, .freq = hz};\ _Static_assert(((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ) *\ OSC_HZ / (_refdiv * _postdiv1 * _postdiv2) == hz,\ STRINGIFY(hz) " Hz cannot be hit with PLL "\ "divisors on line " STRINGIFY(__LINE__)) static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 1, 4, 1); static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 1, 3, 1); static const struct pll_div ppll_init_cfg = PLL_DIVISORS(PPLL_HZ, 3, 2, 1); static const struct pll_div apll_1512_cfg = PLL_DIVISORS(1512*MHz, 1, 1, 1); static const struct pll_div apll_600_cfg = PLL_DIVISORS(600*MHz, 1, 3, 1); static const struct pll_div *apll_cfgs[] = { [APLL_1512_MHZ] = &apll_1512_cfg, [APLL_600_MHZ] = &apll_600_cfg, }; enum { /* PLL_CON0 */ PLL_FBDIV_MASK = 0xfff, PLL_FBDIV_SHIFT = 0, /* PLL_CON1 */ PLL_POSTDIV2_MASK = 0x7, PLL_POSTDIV2_SHIFT = 12, PLL_POSTDIV1_MASK = 0x7, PLL_POSTDIV1_SHIFT = 8, PLL_REFDIV_MASK = 0x3f, PLL_REFDIV_SHIFT = 0, /* PLL_CON2 */ PLL_LOCK_STATUS_MASK = 1, PLL_LOCK_STATUS_SHIFT = 31, PLL_FRACDIV_MASK = 0xffffff, PLL_FRACDIV_SHIFT = 0, /* PLL_CON3 */ PLL_MODE_MASK = 3, PLL_MODE_SHIFT = 8, PLL_MODE_SLOW = 0, PLL_MODE_NORM, PLL_MODE_DEEP, PLL_DSMPD_MASK = 1, PLL_DSMPD_SHIFT = 3, PLL_FRAC_MODE = 0, PLL_INTEGER_MODE = 1, /* PLL_CON4 */ PLL_SSMOD_BP_MASK = 1, PLL_SSMOD_BP_SHIFT = 0, PLL_SSMOD_DIS_SSCG_MASK = 1, PLL_SSMOD_DIS_SSCG_SHIFT = 1, PLL_SSMOD_RESET_MASK = 1, PLL_SSMOD_RESET_SHIFT = 2, PLL_SSMOD_DOWNSPEAD_MASK = 1, PLL_SSMOD_DOWNSPEAD_SHIFT = 3, PLL_SSMOD_DIVVAL_MASK = 0Xf, PLL_SSMOD_DIVVAL_SHIFT = 4, PLL_SSMOD_SPREADAMP_MASK = 0x1f, PLL_SSMOD_SPREADAMP_SHIFT = 8, /* PMUCRU_CLKSEL_CON0 */ PMU_PCLK_DIV_CON_MASK = 0x1f, PMU_PCLK_DIV_CON_SHIFT = 0, /* PMUCRU_CLKSEL_CON1 */ SPI3_PLL_SEL_MASK = 1, SPI3_PLL_SEL_SHIFT = 7, SPI3_PLL_SEL_24M = 0, SPI3_PLL_SEL_PPLL = 1, SPI3_DIV_CON_MASK = 0x7f, SPI3_DIV_CON_SHIFT = 0x0, /* PMUCRU_CLKSEL_CON2 */ I2C_DIV_CON_MASK = 0x7f, I2C8_DIV_CON_SHIFT = 8, I2C0_DIV_CON_SHIFT = 0, /* PMUCRU_CLKSEL_CON3 */ I2C4_DIV_CON_SHIFT = 0, /* CLKSEL_CON0 / CLKSEL_CON2 */ ACLKM_CORE_DIV_CON_MASK = 0x1f, ACLKM_CORE_DIV_CON_SHIFT = 8, CLK_CORE_PLL_SEL_MASK = 3, CLK_CORE_PLL_SEL_SHIFT = 6, CLK_CORE_PLL_SEL_ALPLL = 0x0, CLK_CORE_PLL_SEL_ABPLL = 0x1, CLK_CORE_PLL_SEL_DPLL = 0x10, CLK_CORE_PLL_SEL_GPLL = 0x11, CLK_CORE_DIV_MASK = 0x1f, CLK_CORE_DIV_SHIFT = 0, /* CLKSEL_CON1 / CLKSEL_CON3 */ PCLK_DBG_DIV_MASK = 0x1f, PCLK_DBG_DIV_SHIFT = 0x8, ATCLK_CORE_DIV_MASK = 0x1f, ATCLK_CORE_DIV_SHIFT = 0, /* CLKSEL_CON14 */ PCLK_PERIHP_DIV_CON_MASK = 0x7, PCLK_PERIHP_DIV_CON_SHIFT = 12, HCLK_PERIHP_DIV_CON_MASK = 3, HCLK_PERIHP_DIV_CON_SHIFT = 8, ACLK_PERIHP_PLL_SEL_MASK = 1, ACLK_PERIHP_PLL_SEL_SHIFT = 7, ACLK_PERIHP_PLL_SEL_CPLL = 0, ACLK_PERIHP_PLL_SEL_GPLL = 1, ACLK_PERIHP_DIV_CON_MASK = 0x1f, ACLK_PERIHP_DIV_CON_SHIFT = 0, /* CLKSEL_CON21 */ ACLK_EMMC_PLL_SEL_MASK = 0x1, ACLK_EMMC_PLL_SEL_SHIFT = 7, ACLK_EMMC_PLL_SEL_GPLL = 0x1, ACLK_EMMC_DIV_CON_MASK = 0x1f, ACLK_EMMC_DIV_CON_SHIFT = 0, /* CLKSEL_CON22 */ CLK_EMMC_PLL_MASK = 0x7, CLK_EMMC_PLL_SHIFT = 8, CLK_EMMC_PLL_SEL_GPLL = 0x1, CLK_EMMC_DIV_CON_MASK = 0x7f, CLK_EMMC_DIV_CON_SHIFT = 0, /* CLKSEL_CON23 */ PCLK_PERILP0_DIV_CON_MASK = 0x7, PCLK_PERILP0_DIV_CON_SHIFT = 12, HCLK_PERILP0_DIV_CON_MASK = 3, HCLK_PERILP0_DIV_CON_SHIFT = 8, ACLK_PERILP0_PLL_SEL_MASK = 1, ACLK_PERILP0_PLL_SEL_SHIFT = 7, ACLK_PERILP0_PLL_SEL_CPLL = 0, ACLK_PERILP0_PLL_SEL_GPLL = 1, ACLK_PERILP0_DIV_CON_MASK = 0x1f, ACLK_PERILP0_DIV_CON_SHIFT = 0, /* CLKSEL_CON25 */ PCLK_PERILP1_DIV_CON_MASK = 0x7, PCLK_PERILP1_DIV_CON_SHIFT = 8, HCLK_PERILP1_PLL_SEL_MASK = 1, HCLK_PERILP1_PLL_SEL_SHIFT = 7, HCLK_PERILP1_PLL_SEL_CPLL = 0, HCLK_PERILP1_PLL_SEL_GPLL = 1, HCLK_PERILP1_DIV_CON_MASK = 0x1f, HCLK_PERILP1_DIV_CON_SHIFT = 0, /* CLKSEL_CON26 */ CLK_SARADC_DIV_CON_MASK = 0xff, CLK_SARADC_DIV_CON_SHIFT = 8, /* CLKSEL_CON27 */ CLK_TSADC_SEL_X24M = 0x0, CLK_TSADC_SEL_MASK = 1, CLK_TSADC_SEL_SHIFT = 15, CLK_TSADC_DIV_CON_MASK = 0x3ff, CLK_TSADC_DIV_CON_SHIFT = 0, /* CLKSEL_CON44 */ CLK_PCLK_EDP_PLL_SEL_MASK = 1, CLK_PCLK_EDP_PLL_SEL_SHIFT = 15, CLK_PCLK_EDP_PLL_SEL_CPLL = 0, CLK_PCLK_EDP_DIV_CON_MASK = 0x3f, CLK_PCLK_EDP_DIV_CON_SHIFT = 8, /* CLKSEL_CON47 & CLKSEL_CON48 */ ACLK_VOP_PLL_SEL_MASK = 0x3, ACLK_VOP_PLL_SEL_SHIFT = 6, ACLK_VOP_PLL_SEL_CPLL = 0x1, ACLK_VOP_DIV_CON_MASK = 0x1f, ACLK_VOP_DIV_CON_SHIFT = 0, /* CLKSEL_CON49 & CLKSEL_CON50 */ DCLK_VOP_DCLK_SEL_MASK = 1, DCLK_VOP_DCLK_SEL_SHIFT = 11, DCLK_VOP_DCLK_SEL_DIVOUT = 0, DCLK_VOP_PLL_SEL_MASK = 3, DCLK_VOP_PLL_SEL_SHIFT = 8, DCLK_VOP_PLL_SEL_VPLL = 0, DCLK_VOP_DIV_CON_MASK = 0xff, DCLK_VOP_DIV_CON_SHIFT = 0, /* CLKSEL_CON58 */ CLK_SPI_PLL_SEL_MASK = 1, CLK_SPI_PLL_SEL_CPLL = 0, CLK_SPI_PLL_SEL_GPLL = 1, CLK_SPI_PLL_DIV_CON_MASK = 0x7f, CLK_SPI5_PLL_DIV_CON_SHIFT = 8, CLK_SPI5_PLL_SEL_SHIFT = 15, /* CLKSEL_CON59 */ CLK_SPI1_PLL_SEL_SHIFT = 15, CLK_SPI1_PLL_DIV_CON_SHIFT = 8, CLK_SPI0_PLL_SEL_SHIFT = 7, CLK_SPI0_PLL_DIV_CON_SHIFT = 0, /* CLKSEL_CON60 */ CLK_SPI4_PLL_SEL_SHIFT = 15, CLK_SPI4_PLL_DIV_CON_SHIFT = 8, CLK_SPI2_PLL_SEL_SHIFT = 7, CLK_SPI2_PLL_DIV_CON_SHIFT = 0, /* CLKSEL_CON61 */ CLK_I2C_PLL_SEL_MASK = 1, CLK_I2C_PLL_SEL_CPLL = 0, CLK_I2C_PLL_SEL_GPLL = 1, CLK_I2C5_PLL_SEL_SHIFT = 15, CLK_I2C5_DIV_CON_SHIFT = 8, CLK_I2C1_PLL_SEL_SHIFT = 7, CLK_I2C1_DIV_CON_SHIFT = 0, /* CLKSEL_CON62 */ CLK_I2C6_PLL_SEL_SHIFT = 15, CLK_I2C6_DIV_CON_SHIFT = 8, CLK_I2C2_PLL_SEL_SHIFT = 7, CLK_I2C2_DIV_CON_SHIFT = 0, /* CLKSEL_CON63 */ CLK_I2C7_PLL_SEL_SHIFT = 15, CLK_I2C7_DIV_CON_SHIFT = 8, CLK_I2C3_PLL_SEL_SHIFT = 7, CLK_I2C3_DIV_CON_SHIFT = 0, /* CRU_SOFTRST_CON4 */ RESETN_DDR0_REQ_MASK = 1, RESETN_DDR0_REQ_SHIFT = 8, RESETN_DDRPHY0_REQ_MASK = 1, RESETN_DDRPHY0_REQ_SHIFT = 9, RESETN_DDR1_REQ_MASK = 1, RESETN_DDR1_REQ_SHIFT = 12, RESETN_DDRPHY1_REQ_MASK = 1, RESETN_DDRPHY1_REQ_SHIFT = 13, }; #define VCO_MAX_KHZ (3200 * (MHz / KHz)) #define VCO_MIN_KHZ (800 * (MHz / KHz)) #define OUTPUT_MAX_KHZ (3200 * (MHz / KHz)) #define OUTPUT_MIN_KHZ (16 * (MHz / KHz)) /* the div restrictions of pll in integer mode, * these are defined in * CRU_*PLL_CON0 or PMUCRU_*PLL_CON0 */ #define PLL_DIV_MIN 16 #define PLL_DIV_MAX 3200 /* How to calculate the PLL(from TRM V0.3 Part 1 Page 63): * Formulas also embedded within the Fractional PLL Verilog model: * If DSMPD = 1 (DSM is disabled, "integer mode") * FOUTVCO = FREF / REFDIV * FBDIV * FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2 * Where: * FOUTVCO = Fractional PLL non-divided output frequency * FOUTPOSTDIV = Fractional PLL divided output frequency * (output of second post divider) * FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input) * REFDIV = Fractional PLL input reference clock divider * FBDIV = Integer value programmed into feedback divide * */ static void rkclk_set_pll(u32 *pll_con, const struct pll_div *div) { /* All 8 PLLs have same VCO and output frequency range restrictions. */ u32 vco_khz = OSC_HZ / 1000 * div->fbdiv / div->refdiv; u32 output_khz = vco_khz / div->postdiv1 / div->postdiv2; printk(BIOS_DEBUG, "PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, " "postdiv2=%d, vco=%u khz, output=%u khz\n", pll_con, div->fbdiv, div->refdiv, div->postdiv1, div->postdiv2, vco_khz, output_khz); assert(vco_khz >= VCO_MIN_KHZ && vco_khz <= VCO_MAX_KHZ && output_khz >= OUTPUT_MIN_KHZ && output_khz <= OUTPUT_MAX_KHZ && div->fbdiv >= PLL_DIV_MIN && div->fbdiv <= PLL_DIV_MAX); /* When power on or changing PLL setting, * we must force PLL into slow mode to ensure output stable clock. */ write32(&pll_con[3], RK_CLRSETBITS(PLL_MODE_MASK << PLL_MODE_SHIFT, PLL_MODE_SLOW << PLL_MODE_SHIFT)); /* use integer mode */ write32(&pll_con[3], RK_CLRSETBITS(PLL_DSMPD_MASK << PLL_DSMPD_SHIFT, PLL_INTEGER_MODE << PLL_DSMPD_SHIFT)); write32(&pll_con[0], RK_CLRSETBITS(PLL_FBDIV_MASK << PLL_FBDIV_SHIFT, div->fbdiv << PLL_FBDIV_SHIFT)); write32(&pll_con[1], RK_CLRSETBITS(PLL_POSTDIV2_MASK << PLL_POSTDIV2_SHIFT | PLL_POSTDIV1_MASK << PLL_POSTDIV1_SHIFT | PLL_REFDIV_MASK | PLL_REFDIV_SHIFT, (div->postdiv2 << PLL_POSTDIV2_SHIFT) | (div->postdiv1 << PLL_POSTDIV1_SHIFT) | (div->refdiv << PLL_REFDIV_SHIFT))); /* waiting for pll lock */ while (!(read32(&pll_con[2]) & (1 << PLL_LOCK_STATUS_SHIFT))) udelay(1); /* pll enter normal mode */ write32(&pll_con[3], RK_CLRSETBITS(PLL_MODE_MASK << PLL_MODE_SHIFT, PLL_MODE_NORM << PLL_MODE_SHIFT)); } /* * Configure the DPLL spread spectrum feature on memory clock. * Configure sequence: * 1. PLL been configured as frac mode, and DACPD should be set to 1'b0. * 2. Configure DOWNSPERAD, SPREAD, DIVVAL(option: configure xPLL_CON5 with * extern wave table). * 3. set ssmod_disable_sscg = 1'b0, and set ssmod_bp = 1'b0. * 4. Assert RESET = 1'b1 to SSMOD. * 5. RESET = 1'b0 on SSMOD. * 6. Adjust SPREAD/DIVVAL/DOWNSPREAD. */ static void rkclk_set_dpllssc(struct pll_div *dpll_cfg) { u32 divval; assert(dpll_cfg->refdiv && dpll_cfg->refdiv <= 6); /* * Need to acquire ~30kHZ which is the target modulation frequency. * The modulation frequency ~ 30kHz= OSC_HZ/revdiv/128/divval * (the 128 is the number points in the query table). */ divval = OSC_HZ / 128 / (30 * KHz) / dpll_cfg->refdiv; /* * Use frac mode. * Make sure the output frequency isn't offset, set 0 for Fractional * part of feedback divide. */ write32(&cru_ptr->dpll_con[3], RK_CLRSETBITS(PLL_DSMPD_MASK << PLL_DSMPD_SHIFT, PLL_FRAC_MODE << PLL_DSMPD_SHIFT)); clrsetbits32(&cru_ptr->dpll_con[2], PLL_FRACDIV_MASK << PLL_FRACDIV_SHIFT, 0 << PLL_FRACDIV_SHIFT); /* * Configure SSC divval. * Spread amplitude range = 0.1 * SPREAD[4:0] (%). * The below 8 means SPREAD[4:0] that appears to mitigate EMI on boards * tested. Center and down spread modulation amplitudes based on the * value of SPREAD. * SPREAD[4:0] Center Spread Down Spread * 0 0 0 * 1 +/-0.1% -0.10% * 2 +/-0.2% -0.20% * 3 +/-0.3% -0.30% * 4 +/-0.4% -0.40% * 5 +/-0.5% -0.50% * ... * 31 +/-3.1% -3.10% */ write32(&cru_ptr->dpll_con[4], RK_CLRSETBITS(PLL_SSMOD_DIVVAL_MASK << PLL_SSMOD_DIVVAL_SHIFT, divval << PLL_SSMOD_DIVVAL_SHIFT)); write32(&cru_ptr->dpll_con[4], RK_CLRSETBITS(PLL_SSMOD_SPREADAMP_MASK << PLL_SSMOD_SPREADAMP_SHIFT, 8 << PLL_SSMOD_SPREADAMP_SHIFT)); /* Enable SSC for DPLL */ write32(&cru_ptr->dpll_con[4], RK_CLRBITS(PLL_SSMOD_BP_MASK << PLL_SSMOD_BP_SHIFT | PLL_SSMOD_DIS_SSCG_MASK << PLL_SSMOD_DIS_SSCG_SHIFT)); /* Deassert reset SSMOD */ write32(&cru_ptr->dpll_con[4], RK_CLRBITS(PLL_SSMOD_RESET_MASK << PLL_SSMOD_RESET_SHIFT)); udelay(20); } static int pll_para_config(u32 freq_hz, struct pll_div *div) { u32 ref_khz = OSC_HZ / KHz, refdiv, fbdiv = 0; u32 postdiv1, postdiv2 = 1; u32 fref_khz; u32 diff_khz, best_diff_khz; const u32 max_refdiv = 63, max_fbdiv = 3200, min_fbdiv = 16; const u32 max_postdiv1 = 7, max_postdiv2 = 7; u32 vco_khz; u32 freq_khz = freq_hz / KHz; if (!freq_hz) { printk(BIOS_ERR, "%s: the frequency can't be 0 Hz\n", __func__); return -1; } postdiv1 = DIV_ROUND_UP(VCO_MIN_KHZ, freq_khz); if (postdiv1 > max_postdiv1) { postdiv2 = DIV_ROUND_UP(postdiv1, max_postdiv1); postdiv1 = DIV_ROUND_UP(postdiv1, postdiv2); } vco_khz = freq_khz * postdiv1 * postdiv2; if (vco_khz < VCO_MIN_KHZ || vco_khz > VCO_MAX_KHZ || postdiv2 > max_postdiv2) { printk(BIOS_ERR, "%s: Cannot find out a supported VCO" " for Frequency (%uHz).\n", __func__, freq_hz); return -1; } div->postdiv1 = postdiv1; div->postdiv2 = postdiv2; best_diff_khz = vco_khz; for (refdiv = 1; refdiv < max_refdiv && best_diff_khz; refdiv++) { fref_khz = ref_khz / refdiv; fbdiv = vco_khz / fref_khz; if ((fbdiv >= max_fbdiv) || (fbdiv <= min_fbdiv)) continue; diff_khz = vco_khz - fbdiv * fref_khz; if (fbdiv + 1 < max_fbdiv && diff_khz > fref_khz / 2) { fbdiv++; diff_khz = fref_khz - diff_khz; } if (diff_khz >= best_diff_khz) continue; best_diff_khz = diff_khz; div->refdiv = refdiv; div->fbdiv = fbdiv; } if (best_diff_khz > 4 * (MHz/KHz)) { printk(BIOS_ERR, "%s: Failed to match output frequency %u, " "difference is %u Hz,exceed 4MHZ\n", __func__, freq_hz, best_diff_khz * KHz); return -1; } return 0; } void rkclk_init(void) { u32 aclk_div; u32 hclk_div; u32 pclk_div; /* some cru registers changed by bootrom, we'd better reset them to * reset/default values described in TRM to avoid confusion in kernel. * Please consider these threee lines as a fix of bootrom bug. */ write32(&cru_ptr->clksel_con[12], 0xffff4101); write32(&cru_ptr->clksel_con[19], 0xffff033f); write32(&cru_ptr->clksel_con[56], 0x00030003); /* configure pmu pll(ppll) */ rkclk_set_pll(&pmucru_ptr->ppll_con[0], &ppll_init_cfg); /* configure pmu pclk */ pclk_div = PPLL_HZ / PMU_PCLK_HZ - 1; assert((unsigned int)(PPLL_HZ - (pclk_div + 1) * PMU_PCLK_HZ) <= pclk_div && pclk_div <= 0x1f); write32(&pmucru_ptr->pmucru_clksel[0], RK_CLRSETBITS(PMU_PCLK_DIV_CON_MASK << PMU_PCLK_DIV_CON_SHIFT, pclk_div << PMU_PCLK_DIV_CON_SHIFT)); /* configure gpll cpll */ rkclk_set_pll(&cru_ptr->gpll_con[0], &gpll_init_cfg); rkclk_set_pll(&cru_ptr->cpll_con[0], &cpll_init_cfg); /* configure perihp aclk, hclk, pclk */ aclk_div = GPLL_HZ / PERIHP_ACLK_HZ - 1; assert((aclk_div + 1) * PERIHP_ACLK_HZ == GPLL_HZ && aclk_div <= 0x1f); hclk_div = PERIHP_ACLK_HZ / PERIHP_HCLK_HZ - 1; assert((hclk_div + 1) * PERIHP_HCLK_HZ == PERIHP_ACLK_HZ && (hclk_div <= 0x3)); pclk_div = PERIHP_ACLK_HZ / PERIHP_PCLK_HZ - 1; assert((pclk_div + 1) * PERIHP_PCLK_HZ == PERIHP_ACLK_HZ && (pclk_div <= 0x7)); write32(&cru_ptr->clksel_con[14], RK_CLRSETBITS(PCLK_PERIHP_DIV_CON_MASK << PCLK_PERIHP_DIV_CON_SHIFT | HCLK_PERIHP_DIV_CON_MASK << HCLK_PERIHP_DIV_CON_SHIFT | ACLK_PERIHP_PLL_SEL_MASK << ACLK_PERIHP_PLL_SEL_SHIFT | ACLK_PERIHP_DIV_CON_MASK << ACLK_PERIHP_DIV_CON_SHIFT, pclk_div << PCLK_PERIHP_DIV_CON_SHIFT | hclk_div << HCLK_PERIHP_DIV_CON_SHIFT | ACLK_PERIHP_PLL_SEL_GPLL << ACLK_PERIHP_PLL_SEL_SHIFT | aclk_div << ACLK_PERIHP_DIV_CON_SHIFT)); /* configure perilp0 aclk, hclk, pclk */ aclk_div = GPLL_HZ / PERILP0_ACLK_HZ - 1; assert((aclk_div + 1) * PERILP0_ACLK_HZ == GPLL_HZ && aclk_div <= 0x1f); hclk_div = PERILP0_ACLK_HZ / PERILP0_HCLK_HZ - 1; assert((hclk_div + 1) * PERILP0_HCLK_HZ == PERILP0_ACLK_HZ && (hclk_div <= 0x3)); pclk_div = PERILP0_ACLK_HZ / PERILP0_PCLK_HZ - 1; assert((pclk_div + 1) * PERILP0_PCLK_HZ == PERILP0_ACLK_HZ && (pclk_div <= 0x7)); write32(&cru_ptr->clksel_con[23], RK_CLRSETBITS(PCLK_PERILP0_DIV_CON_MASK << PCLK_PERILP0_DIV_CON_SHIFT | HCLK_PERILP0_DIV_CON_MASK << HCLK_PERILP0_DIV_CON_SHIFT | ACLK_PERILP0_PLL_SEL_MASK << ACLK_PERILP0_PLL_SEL_SHIFT | ACLK_PERILP0_DIV_CON_MASK << ACLK_PERILP0_DIV_CON_SHIFT, pclk_div << PCLK_PERILP0_DIV_CON_SHIFT | hclk_div << HCLK_PERILP0_DIV_CON_SHIFT | ACLK_PERILP0_PLL_SEL_GPLL << ACLK_PERILP0_PLL_SEL_SHIFT | aclk_div << ACLK_PERILP0_DIV_CON_SHIFT)); /* perilp1 hclk select gpll as source */ hclk_div = GPLL_HZ / PERILP1_HCLK_HZ - 1; assert((hclk_div + 1) * PERILP1_HCLK_HZ == GPLL_HZ && (hclk_div <= 0x1f)); pclk_div = PERILP1_HCLK_HZ / PERILP1_PCLK_HZ - 1; assert((pclk_div + 1) * PERILP1_PCLK_HZ == PERILP1_HCLK_HZ && (pclk_div <= 0x7)); write32(&cru_ptr->clksel_con[25], RK_CLRSETBITS(PCLK_PERILP1_DIV_CON_MASK << PCLK_PERILP1_DIV_CON_SHIFT | HCLK_PERILP1_DIV_CON_MASK << HCLK_PERILP1_DIV_CON_SHIFT | HCLK_PERILP1_PLL_SEL_MASK << HCLK_PERILP1_PLL_SEL_SHIFT, pclk_div << PCLK_PERILP1_DIV_CON_SHIFT | hclk_div << HCLK_PERILP1_DIV_CON_SHIFT | HCLK_PERILP1_PLL_SEL_GPLL << HCLK_PERILP1_PLL_SEL_SHIFT)); } void rkclk_configure_cpu(enum apll_frequencies freq, enum cpu_cluster cluster) { u32 aclkm_div, atclk_div, pclk_dbg_div, apll_hz; int con_base, parent; u32 *pll_con; switch (cluster) { case CPU_CLUSTER_LITTLE: con_base = 0; parent = CLK_CORE_PLL_SEL_ALPLL; pll_con = &cru_ptr->apll_l_con[0]; break; case CPU_CLUSTER_BIG: default: con_base = 2; parent = CLK_CORE_PLL_SEL_ABPLL; pll_con = &cru_ptr->apll_b_con[0]; break; } apll_hz = apll_cfgs[freq]->freq; rkclk_set_pll(pll_con, apll_cfgs[freq]); aclkm_div = DIV_ROUND_UP(apll_hz, ACLKM_CORE_HZ) - 1; pclk_dbg_div = DIV_ROUND_UP(apll_hz, PCLK_DBG_HZ) - 1; atclk_div = DIV_ROUND_UP(apll_hz, ATCLK_CORE_HZ) - 1; write32(&cru_ptr->clksel_con[con_base], RK_CLRSETBITS(ACLKM_CORE_DIV_CON_MASK << ACLKM_CORE_DIV_CON_SHIFT | CLK_CORE_PLL_SEL_MASK << CLK_CORE_PLL_SEL_SHIFT | CLK_CORE_DIV_MASK << CLK_CORE_DIV_SHIFT, aclkm_div << ACLKM_CORE_DIV_CON_SHIFT | parent << CLK_CORE_PLL_SEL_SHIFT | 0 << CLK_CORE_DIV_SHIFT)); write32(&cru_ptr->clksel_con[con_base + 1], RK_CLRSETBITS(PCLK_DBG_DIV_MASK << PCLK_DBG_DIV_SHIFT | ATCLK_CORE_DIV_MASK << ATCLK_CORE_DIV_SHIFT, pclk_dbg_div << PCLK_DBG_DIV_SHIFT | atclk_div << ATCLK_CORE_DIV_SHIFT)); } void rkclk_configure_ddr(unsigned int hz) { struct pll_div dpll_cfg; /* IC ECO bug, need to set this register */ write32(&rk3399_pmusgrf->ddr_rgn_con[16], 0xc000c000); /* clk_ddrc == DPLL = 24MHz / refdiv * fbdiv / postdiv1 / postdiv2 */ switch (hz) { case 200*MHz: dpll_cfg = (struct pll_div) {.refdiv = 1, .fbdiv = 50, .postdiv1 = 3, .postdiv2 = 2}; break; case 300*MHz: dpll_cfg = (struct pll_div) {.refdiv = 2, .fbdiv = 100, .postdiv1 = 4, .postdiv2 = 1}; break; case 666*MHz: dpll_cfg = (struct pll_div) {.refdiv = 2, .fbdiv = 111, .postdiv1 = 2, .postdiv2 = 1}; break; case 800*MHz: dpll_cfg = (struct pll_div) {.refdiv = 1, .fbdiv = 100, .postdiv1 = 3, .postdiv2 = 1}; break; case 933*MHz: dpll_cfg = (struct pll_div) {.refdiv = 1, .fbdiv = 116, .postdiv1 = 3, .postdiv2 = 1}; break; default: die("Unsupported SDRAM frequency, add to clock.c!"); } rkclk_set_pll(&cru_ptr->dpll_con[0], &dpll_cfg); if (CONFIG(RK3399_SPREAD_SPECTRUM_DDR)) rkclk_set_dpllssc(&dpll_cfg); } #define SPI_CLK_REG_VALUE(bus, clk_div) \ RK_CLRSETBITS(CLK_SPI_PLL_SEL_MASK << \ CLK_SPI ##bus## _PLL_SEL_SHIFT | \ CLK_SPI_PLL_DIV_CON_MASK << \ CLK_SPI ##bus## _PLL_DIV_CON_SHIFT, \ CLK_SPI_PLL_SEL_GPLL << \ CLK_SPI ##bus## _PLL_SEL_SHIFT | \ (clk_div - 1) << \ CLK_SPI ##bus## _PLL_DIV_CON_SHIFT) void rkclk_configure_spi(unsigned int bus, unsigned int hz) { int src_clk_div; int pll; /* spi3 src clock from ppll, while spi0,1,2,4,5 src clock from gpll */ pll = (bus == 3) ? PPLL_HZ : GPLL_HZ; src_clk_div = pll / hz; assert((src_clk_div - 1 <= 127) && (src_clk_div * hz == pll)); switch (bus) { case 0: write32(&cru_ptr->clksel_con[59], SPI_CLK_REG_VALUE(0, src_clk_div)); break; case 1: write32(&cru_ptr->clksel_con[59], SPI_CLK_REG_VALUE(1, src_clk_div)); break; case 2: write32(&cru_ptr->clksel_con[60], SPI_CLK_REG_VALUE(2, src_clk_div)); break; case 3: write32(&pmucru_ptr->pmucru_clksel[1], RK_CLRSETBITS(SPI3_PLL_SEL_MASK << SPI3_PLL_SEL_SHIFT | SPI3_DIV_CON_MASK << SPI3_DIV_CON_SHIFT, SPI3_PLL_SEL_PPLL << SPI3_PLL_SEL_SHIFT | (src_clk_div - 1) << SPI3_DIV_CON_SHIFT)); break; case 4: write32(&cru_ptr->clksel_con[60], SPI_CLK_REG_VALUE(4, src_clk_div)); break; case 5: write32(&cru_ptr->clksel_con[58], SPI_CLK_REG_VALUE(5, src_clk_div)); break; default: printk(BIOS_ERR, "do not support this spi bus\n"); } } #define I2C_CLK_REG_VALUE(bus, clk_div) \ RK_CLRSETBITS(I2C_DIV_CON_MASK << \ CLK_I2C ##bus## _DIV_CON_SHIFT | \ CLK_I2C_PLL_SEL_MASK << \ CLK_I2C ##bus## _PLL_SEL_SHIFT, \ (clk_div - 1) << \ CLK_I2C ##bus## _DIV_CON_SHIFT | \ CLK_I2C_PLL_SEL_GPLL << \ CLK_I2C ##bus## _PLL_SEL_SHIFT) #define PMU_I2C_CLK_REG_VALUE(bus, clk_div) \ RK_CLRSETBITS(I2C_DIV_CON_MASK << I2C ##bus## _DIV_CON_SHIFT, \ (clk_div - 1) << I2C ##bus## _DIV_CON_SHIFT) uint32_t rkclk_i2c_clock_for_bus(unsigned int bus) { int src_clk_div, pll, freq; /* i2c0,4,8 src clock from ppll, i2c1,2,3,5,6,7 src clock from gpll */ if (bus == 0 || bus == 4 || bus == 8) { pll = PPLL_HZ; freq = 338*MHz; } else { pll = GPLL_HZ; freq = 198*MHz; } src_clk_div = pll / freq; assert((src_clk_div - 1 <= 127) && (src_clk_div * freq == pll)); switch (bus) { case 0: write32(&pmucru_ptr->pmucru_clksel[2], PMU_I2C_CLK_REG_VALUE(0, src_clk_div)); break; case 1: write32(&cru_ptr->clksel_con[61], I2C_CLK_REG_VALUE(1, src_clk_div)); break; case 2: write32(&cru_ptr->clksel_con[62], I2C_CLK_REG_VALUE(2, src_clk_div)); break; case 3: write32(&cru_ptr->clksel_con[63], I2C_CLK_REG_VALUE(3, src_clk_div)); break; case 4: write32(&pmucru_ptr->pmucru_clksel[3], PMU_I2C_CLK_REG_VALUE(4, src_clk_div)); break; case 5: write32(&cru_ptr->clksel_con[61], I2C_CLK_REG_VALUE(5, src_clk_div)); break; case 6: write32(&cru_ptr->clksel_con[62], I2C_CLK_REG_VALUE(6, src_clk_div)); break; case 7: write32(&cru_ptr->clksel_con[63], I2C_CLK_REG_VALUE(7, src_clk_div)); break; case 8: write32(&pmucru_ptr->pmucru_clksel[2], PMU_I2C_CLK_REG_VALUE(8, src_clk_div)); break; default: die("unknown i2c bus\n"); } return freq; } static u32 clk_gcd(u32 a, u32 b) { while (b != 0) { int r = b; b = a % b; a = r; } return a; } void rkclk_configure_i2s(unsigned int hz) { int n, d; int v; /** * clk_i2s0_sel: divider output from fraction * clk_i2s0_pll_sel source clock: cpll * clk_i2s0_div_con: 1 (div+1) */ write32(&cru_ptr->clksel_con[28], RK_CLRSETBITS(3 << 8 | 1 << 7 | 0x7f << 0, 1 << 8 | 0 << 7 | 0 << 0)); /* make sure and enable i2s0 path gates */ write32(&cru_ptr->clkgate_con[8], RK_CLRBITS(1 << 12 | 1 << 5 | 1 << 4 | 1 << 3)); /* set frac divider */ v = clk_gcd(CPLL_HZ, hz); n = (CPLL_HZ / v) & (0xffff); d = (hz / v) & (0xffff); assert(hz == (u64)CPLL_HZ * d / n); write32(&cru_ptr->clksel_con[96], d << 16 | n); /** * clk_i2sout_sel clk_i2s * clk_i2s_ch_sel: clk_i2s0 */ write32(&cru_ptr->clksel_con[31], RK_CLRSETBITS(1 << 2 | 3 << 0, 0 << 2 | 0 << 0)); } void rkclk_configure_saradc(unsigned int hz) { int src_clk_div; /* saradc src clk from 24MHz */ src_clk_div = 24 * MHz / hz; assert((src_clk_div - 1 <= 255) && (src_clk_div * hz == 24 * MHz)); write32(&cru_ptr->clksel_con[26], RK_CLRSETBITS(CLK_SARADC_DIV_CON_MASK << CLK_SARADC_DIV_CON_SHIFT, (src_clk_div - 1) << CLK_SARADC_DIV_CON_SHIFT)); } void rkclk_configure_vop_aclk(u32 vop_id, u32 aclk_hz) { u32 div; void *reg_addr = vop_id ? &cru_ptr->clksel_con[48] : &cru_ptr->clksel_con[47]; /* vop aclk source clk: cpll */ div = CPLL_HZ / aclk_hz; assert((div - 1 <= 31) && (div * aclk_hz == CPLL_HZ)); write32(reg_addr, RK_CLRSETBITS( ACLK_VOP_PLL_SEL_MASK << ACLK_VOP_PLL_SEL_SHIFT | ACLK_VOP_DIV_CON_MASK << ACLK_VOP_DIV_CON_SHIFT, ACLK_VOP_PLL_SEL_CPLL << ACLK_VOP_PLL_SEL_SHIFT | (div - 1) << ACLK_VOP_DIV_CON_SHIFT)); } int rkclk_configure_vop_dclk(u32 vop_id, u32 dclk_hz) { struct pll_div vpll_config = {0}; void *reg_addr = vop_id ? &cru_ptr->clksel_con[50] : &cru_ptr->clksel_con[49]; /* vop dclk source from vpll, and equals to vpll(means div == 1) */ if (pll_para_config(dclk_hz, &vpll_config)) return -1; rkclk_set_pll(&cru_ptr->vpll_con[0], &vpll_config); write32(reg_addr, RK_CLRSETBITS( DCLK_VOP_DCLK_SEL_MASK << DCLK_VOP_DCLK_SEL_SHIFT | DCLK_VOP_PLL_SEL_MASK << DCLK_VOP_PLL_SEL_SHIFT | DCLK_VOP_DIV_CON_MASK << DCLK_VOP_DIV_CON_SHIFT, DCLK_VOP_DCLK_SEL_DIVOUT << DCLK_VOP_DCLK_SEL_SHIFT | DCLK_VOP_PLL_SEL_VPLL << DCLK_VOP_PLL_SEL_SHIFT | (1 - 1) << DCLK_VOP_DIV_CON_SHIFT)); return 0; } void rkclk_configure_tsadc(unsigned int hz) { int src_clk_div; /* use 24M as src clock */ src_clk_div = OSC_HZ / hz; assert((src_clk_div - 1 <= 1023) && (src_clk_div * hz == OSC_HZ)); write32(&cru_ptr->clksel_con[27], RK_CLRSETBITS( CLK_TSADC_DIV_CON_MASK << CLK_TSADC_DIV_CON_SHIFT | CLK_TSADC_SEL_MASK << CLK_TSADC_SEL_SHIFT, src_clk_div << CLK_TSADC_DIV_CON_SHIFT | CLK_TSADC_SEL_X24M << CLK_TSADC_SEL_SHIFT)); } void rkclk_configure_emmc(void) { int src_clk_div; int aclk_emmc = 148500*KHz; int clk_emmc = 148500*KHz; /* Select aclk_emmc source from GPLL */ src_clk_div = GPLL_HZ / aclk_emmc; assert((src_clk_div - 1 <= 31) && (src_clk_div * aclk_emmc == GPLL_HZ)); write32(&cru_ptr->clksel_con[21], RK_CLRSETBITS(ACLK_EMMC_PLL_SEL_MASK << ACLK_EMMC_PLL_SEL_SHIFT | ACLK_EMMC_DIV_CON_MASK << ACLK_EMMC_DIV_CON_SHIFT, ACLK_EMMC_PLL_SEL_GPLL << ACLK_EMMC_PLL_SEL_SHIFT | (src_clk_div - 1) << ACLK_EMMC_DIV_CON_SHIFT)); /* Select clk_emmc source from GPLL too */ src_clk_div = GPLL_HZ / clk_emmc; assert((src_clk_div - 1 <= 127) && (src_clk_div * clk_emmc == GPLL_HZ)); write32(&cru_ptr->clksel_con[22], RK_CLRSETBITS(CLK_EMMC_PLL_MASK << CLK_EMMC_PLL_SHIFT | CLK_EMMC_DIV_CON_MASK << CLK_EMMC_DIV_CON_SHIFT, CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT | (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT)); } int rkclk_was_watchdog_reset(void) { /* Bits 5 and 4 are "second" and "first" global watchdog reset. */ return read32(&cru_ptr->glb_rst_st) & 0x30; } void rkclk_configure_edp(unsigned int hz) { int src_clk_div; src_clk_div = CPLL_HZ / hz; assert((src_clk_div - 1 <= 63) && (src_clk_div * hz == CPLL_HZ)); write32(&cru_ptr->clksel_con[44], RK_CLRSETBITS(CLK_PCLK_EDP_PLL_SEL_MASK << CLK_PCLK_EDP_PLL_SEL_SHIFT | CLK_PCLK_EDP_DIV_CON_MASK << CLK_PCLK_EDP_DIV_CON_SHIFT, CLK_PCLK_EDP_PLL_SEL_CPLL << CLK_PCLK_EDP_PLL_SEL_SHIFT | (src_clk_div - 1) << CLK_PCLK_EDP_DIV_CON_SHIFT)); } void rkclk_configure_mipi(void) { /* Enable clk_mipidphy_ref and clk_mipidphy_cfg */ write32(&cru_ptr->clkgate_con[11], RK_CLRBITS(1 << 14 | 1 << 15)); /* Enable pclk_mipi_dsi0 */ write32(&cru_ptr->clkgate_con[29], RK_CLRBITS(1 << 1)); }