/* SPDX-License-Identifier: GPL-2.0-only */ /* This file is part of the coreboot project. */ #include #include #include #include #include #include #include #include #include #include #include #define edp_debug(x...) do {if (0) printk(BIOS_DEBUG, x); } while (0) static struct rk_edp rk_edp; #define MAX_CR_LOOP 5 #define MAX_EQ_LOOP 5 #define DP_LINK_STATUS_SIZE 6 static const char *voltage_names[] = { "0.4V", "0.6V", "0.8V", "1.2V" }; static const char *pre_emph_names[] = { "0dB", "3.5dB", "6dB", "9.5dB" }; #define DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_1200 #define DP_PRE_EMPHASIS_MAX DP_TRAIN_PRE_EMPHASIS_9_5 static void rk_edp_init_refclk(struct rk_edp *edp) { write32(&edp->regs->analog_ctl_2, SEL_24M); write32(&edp->regs->pll_reg_1, REF_CLK_24M); /*initial value*/ write32(&edp->regs->pll_reg_2, LDO_OUTPUT_V_SEL_145 | KVCO_DEFALUT | CHG_PUMP_CUR_SEL_5US | V2L_CUR_SEL_1MA); write32(&edp->regs->pll_reg_3, LOCK_DET_CNT_SEL_256 | LOOP_FILTER_RESET | PALL_SSC_RESET | LOCK_DET_BYPASS | PLL_LOCK_DET_MODE | PLL_LOCK_DET_FORCE); write32(&edp->regs->pll_reg_5, REGULATOR_V_SEL_950MV | STANDBY_CUR_SEL | CHG_PUMP_INOUT_CTRL_1200MV | CHG_PUMP_INPUT_CTRL_OP); write32(&edp->regs->ssc_reg, SSC_OFFSET | SSC_MODE | SSC_DEPTH); write32(&edp->regs->tx_common, TX_SWING_PRE_EMP_MODE | PRE_DRIVER_PW_CTRL1 | LP_MODE_CLK_REGULATOR | RESISTOR_MSB_CTRL | RESISTOR_CTRL); write32(&edp->regs->dp_aux, DP_AUX_COMMON_MODE | DP_AUX_EN | AUX_TERM_50OHM); write32(&edp->regs->dp_bias, DP_BG_OUT_SEL | DP_DB_CUR_CTRL | DP_BG_SEL | DP_RESISTOR_TUNE_BG); write32(&edp->regs->dp_reserv2, CH1_CH3_SWING_EMP_CTRL | CH0_CH2_SWING_EMP_CTRL); } static void rk_edp_init_interrupt(struct rk_edp *edp) { /* Set interrupt pin assertion polarity as high */ write32(&edp->regs->int_ctl, INT_POL); /* Clear pending registers */ write32(&edp->regs->common_int_sta_1, 0xff); write32(&edp->regs->common_int_sta_2, 0x4f); write32(&edp->regs->common_int_sta_3, 0xff); write32(&edp->regs->common_int_sta_4, 0x27); write32(&edp->regs->dp_int_sta, 0x7f); /* 0:mask,1: unmask */ write32(&edp->regs->common_int_mask_1, 0x00); write32(&edp->regs->common_int_mask_2, 0x00); write32(&edp->regs->common_int_mask_3, 0x00); write32(&edp->regs->common_int_mask_4, 0x00); write32(&edp->regs->int_sta_mask, 0x00); } static void rk_edp_enable_sw_function(struct rk_edp *edp) { clrbits32(&edp->regs->func_en_1, SW_FUNC_EN_N); } static int rk_edp_get_pll_lock_status(struct rk_edp *edp) { u32 val; val = read32(&edp->regs->dp_debug_ctl); return (val & PLL_LOCK) ? DP_PLL_LOCKED : DP_PLL_UNLOCKED; } static void rk_edp_init_analog_func(struct rk_edp *edp) { struct stopwatch sw; write32(&edp->regs->dp_pd, 0x00); write32(&edp->regs->common_int_sta_1, PLL_LOCK_CHG); clrbits32(&edp->regs->dp_debug_ctl, F_PLL_LOCK | PLL_LOCK_CTRL); stopwatch_init_msecs_expire(&sw, PLL_LOCK_TIMEOUT); while (rk_edp_get_pll_lock_status(edp) == DP_PLL_UNLOCKED) { if (stopwatch_expired(&sw)) { printk(BIOS_ERR, "%s: PLL is not locked\n", __func__); return; } } /* Enable Serdes FIFO function and Link symbol clock domain module */ clrbits32(&edp->regs->func_en_2, SERDES_FIFO_FUNC_EN_N | LS_CLK_DOMAIN_FUNC_EN_N | AUX_FUNC_EN_N | SSC_FUNC_EN_N); } static void rk_edp_init_aux(struct rk_edp *edp) { /* Clear interrupts related to AUX channel */ write32(&edp->regs->dp_int_sta, AUX_FUNC_EN_N); /* Disable AUX channel module */ setbits32(&edp->regs->func_en_2, AUX_FUNC_EN_N); /* Receive AUX Channel DEFER commands equal to DEFFER_COUNT*64 */ write32(&edp->regs->aux_ch_defer_dtl, DEFER_CTRL_EN | DEFER_COUNT(1)); /* Enable AUX channel module */ clrbits32(&edp->regs->func_en_2, AUX_FUNC_EN_N); } static int rk_edp_aux_enable(struct rk_edp *edp) { struct stopwatch sw; setbits32(&edp->regs->aux_ch_ctl_2, AUX_EN); stopwatch_init_msecs_expire(&sw, 20); do { if (!(read32(&edp->regs->aux_ch_ctl_2) & AUX_EN)) return 0; } while (!stopwatch_expired(&sw)); return -1; } static int rk_edp_is_aux_reply(struct rk_edp *edp) { struct stopwatch sw; stopwatch_init_msecs_expire(&sw, 10); while (!(read32(&edp->regs->dp_int_sta) & RPLY_RECEIV)) { if (stopwatch_expired(&sw)) return -1; } write32(&edp->regs->dp_int_sta, RPLY_RECEIV); return 0; } static int rk_edp_start_aux_transaction(struct rk_edp *edp) { int val; /* Enable AUX CH operation */ if (rk_edp_aux_enable(edp)) { edp_debug("AUX CH enable timeout!\n"); return -1; } /* Is AUX CH command reply received? */ if (rk_edp_is_aux_reply(edp)) { edp_debug("AUX CH command reply failed!\n"); return -1; } /* Clear interrupt source for AUX CH access error */ val = read32(&edp->regs->dp_int_sta); if (val & AUX_ERR) { write32(&edp->regs->dp_int_sta, AUX_ERR); return -1; } /* Check AUX CH error access status */ val = read32(&edp->regs->dp_int_sta); if ((val & AUX_STATUS_MASK) != 0) { edp_debug("AUX CH error happens: %d\n\n", val & AUX_STATUS_MASK); return -1; } return 0; } static int rk_edp_dpcd_transfer(struct rk_edp *edp, unsigned int val_addr, u8 *data, unsigned int length, enum dpcd_request request) { int val; int i, try_times; int retval = 0; u32 len = 0; while (length) { len = MIN(length, 16); for (try_times = 0; try_times < 10; try_times++) { /* Clear AUX CH data buffer */ val = BUF_CLR; write32(&edp->regs->buf_data_ctl, val); /* Select DPCD device address */ val = AUX_ADDR_7_0(val_addr); write32(&edp->regs->aux_addr_7_0, val); val = AUX_ADDR_15_8(val_addr); write32(&edp->regs->aux_addr_15_8, val); val = AUX_ADDR_19_16(val_addr); write32(&edp->regs->aux_addr_19_16, val); /* * Set DisplayPort transaction and read 1 byte * If bit 3 is 1, DisplayPort transaction. * If Bit 3 is 0, I2C transaction. */ if (request == DPCD_WRITE) { val = AUX_LENGTH(len) | AUX_TX_COMM_DP_TRANSACTION | AUX_TX_COMM_WRITE; for (i = 0; i < len; i++) write32(&edp->regs->buf_data[i], *data++); } else val = AUX_LENGTH(len) | AUX_TX_COMM_DP_TRANSACTION | AUX_TX_COMM_READ; write32(&edp->regs->aux_ch_ctl_1, val); /* Start AUX transaction */ retval = rk_edp_start_aux_transaction(edp); if (retval == 0) break; else printk(BIOS_WARNING, "read dpcd Aux Transaction fail!\n"); } if (retval) return -1; if (request == DPCD_READ) { for (i = 0; i < len; i++) *data++ = (u8)read32(&edp->regs->buf_data[i]); } length -= len; val_addr += 16; } return 0; } static int rk_edp_dpcd_read(struct rk_edp *edp, u32 addr, u8 *values, size_t size) { return rk_edp_dpcd_transfer(edp, addr, values, size, DPCD_READ); } static int rk_edp_dpcd_write(struct rk_edp *edp, u32 addr, u8 *values, size_t size) { return rk_edp_dpcd_transfer(edp, addr, values, size, DPCD_WRITE); } static int rk_edp_link_power_up(struct rk_edp *edp) { u8 value; int err; /* DP_SET_POWER register is only available on DPCD v1.1 and later */ if (edp->link_train.revision < 0x11) return 0; err = rk_edp_dpcd_read(edp, DPCD_LINK_POWER_STATE, &value, 1); if (err < 0) return err; value &= ~DP_SET_POWER_MASK; value |= DP_SET_POWER_D0; err = rk_edp_dpcd_write(edp, DPCD_LINK_POWER_STATE, &value, 1); if (err < 0) return err; /* * According to the DP 1.1 specification, a "Sink Device must exit the * power saving state within 1 ms" (Section 2.5.3.1, Table 5-52, "Sink * Control Field" (register 0x600). */ mdelay(1); return 0; } static int rk_edp_link_configure(struct rk_edp *edp) { u8 values[2]; values[0] = edp->link_train.link_rate; values[1] = edp->link_train.lane_count; return rk_edp_dpcd_write(edp, DPCD_LINK_BW_SET, values, sizeof(values)); } static void rk_edp_set_link_training(struct rk_edp *edp, const u8 *training_values) { int i; for (i = 0; i < edp->link_train.lane_count; i++) write32(&edp->regs->ln_link_trn_ctl[i], training_values[i]); } static u8 edp_link_status(const u8 *link_status, int r) { return link_status[r - DPCD_LANE0_1_STATUS]; } static int rk_edp_dpcd_read_link_status(struct rk_edp *edp, u8 *link_status) { return rk_edp_dpcd_read(edp, DPCD_LANE0_1_STATUS, link_status, DP_LINK_STATUS_SIZE); } static u8 edp_get_lane_status(const u8 *link_status, int lane) { int i = DPCD_LANE0_1_STATUS + (lane >> 1); int s = (lane & 1) * 4; u8 l = edp_link_status(link_status, i); return (l >> s) & 0xf; } static int rk_edp_clock_recovery_ok(const u8 *link_status, int lane_count) { int lane; u8 lane_status; for (lane = 0; lane < lane_count; lane++) { lane_status = edp_get_lane_status(link_status, lane); if ((lane_status & DP_LANE_CR_DONE) == 0) return 0; } return 1; } static int rk_edp_channel_eq_ok(const u8 *link_status, int lane_count) { u8 lane_align; u8 lane_status; int lane; lane_align = edp_link_status(link_status, DPCD_LANE_ALIGN_STATUS_UPDATED); if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0) return 0; for (lane = 0; lane < lane_count; lane++) { lane_status = edp_get_lane_status(link_status, lane); if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS) return 0; } return 1; } static u8 rk_edp_get_adjust_request_voltage(const u8 *link_status, int lane) { int i = DPCD_ADJUST_REQUEST_LANE0_1 + (lane >> 1); int s = ((lane & 1) ? DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT : DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT); u8 l = edp_link_status(link_status, i); return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT; } static u8 rk_edp_get_adjust_request_pre_emphasis(const u8 *link_status, int lane) { int i = DPCD_ADJUST_REQUEST_LANE0_1 + (lane >> 1); int s = ((lane & 1) ? DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT : DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT); u8 l = edp_link_status(link_status, i); return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT; } static void edp_get_adjust_train(const u8 *link_status, int lane_count, u8 train_set[]) { u8 v = 0; u8 p = 0; int lane; for (lane = 0; lane < lane_count; lane++) { u8 this_v = rk_edp_get_adjust_request_voltage(link_status, lane); u8 this_p = rk_edp_get_adjust_request_pre_emphasis(link_status, lane); printk(BIOS_DEBUG, "requested signal parameters: lane %d " "voltage %s pre_emph %s\n", lane, voltage_names[this_v >> DP_TRAIN_VOLTAGE_SWING_SHIFT], pre_emph_names[this_p >> DP_TRAIN_PRE_EMPHASIS_SHIFT]); if (this_v > v) v = this_v; if (this_p > p) p = this_p; } if (v >= DP_VOLTAGE_MAX) v |= DP_TRAIN_MAX_SWING_REACHED; if (p >= DP_PRE_EMPHASIS_MAX) p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; printk(BIOS_DEBUG, "using signal parameters: voltage %s pre_emph %s\n", voltage_names[(v & DP_TRAIN_VOLTAGE_SWING_MASK) >> DP_TRAIN_VOLTAGE_SWING_SHIFT], pre_emph_names[(p & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT]); for (lane = 0; lane < 4; lane++) train_set[lane] = v | p; } static int rk_edp_link_train_cr(struct rk_edp *edp) { int clock_recovery; u8 voltage, tries = 0; u8 status[DP_LINK_STATUS_SIZE]; int i; u8 value; value = DP_TRAINING_PATTERN_1; write32(&edp->regs->dp_training_ptn_set, value); rk_edp_dpcd_write(edp, DPCD_TRAINING_PATTERN_SET, &value, 1); memset(edp->train_set, 0, 4); /* clock recovery loop */ clock_recovery = 0; tries = 0; voltage = 0xff; while (1) { rk_edp_set_link_training(edp, edp->train_set); rk_edp_dpcd_write(edp, DPCD_TRAINING_LANE0_SET, edp->train_set, edp->link_train.lane_count); mdelay(1); if (rk_edp_dpcd_read_link_status(edp, status) < 0) { printk(BIOS_ERR, "displayport link status failed\n"); break; } if (rk_edp_clock_recovery_ok(status, edp->link_train.lane_count)) { clock_recovery = 1; break; } for (i = 0; i < edp->link_train.lane_count; i++) { if ((edp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) break; } if (i == edp->link_train.lane_count) { printk(BIOS_ERR, "clock recovery reached max voltage\n"); break; } if ((edp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { ++tries; if (tries == MAX_CR_LOOP) { printk(BIOS_ERR, "clock recovery tried 5 times\n"); break; } } else tries = 0; voltage = edp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; /* Compute new train_set as requested by sink */ edp_get_adjust_train(status, edp->link_train.lane_count, edp->train_set); } if (!clock_recovery) { printk(BIOS_ERR, "clock recovery failed\n"); return -1; } else { printk(BIOS_DEBUG, "clock recovery at voltage %d pre-emphasis %d\n", edp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK, (edp->train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT); return 0; } } static int rk_edp_link_train_ce(struct rk_edp *edp) { int channel_eq; u8 value, tries = 0; u8 status[DP_LINK_STATUS_SIZE]; value = DP_TRAINING_PATTERN_2; write32(&edp->regs->dp_training_ptn_set, value); rk_edp_dpcd_write(edp, DPCD_TRAINING_PATTERN_SET, &value, 1); /* channel equalization loop */ channel_eq = 0; for (tries = 0; tries < 5; tries++) { rk_edp_set_link_training(edp, edp->train_set); rk_edp_dpcd_write(edp, DPCD_TRAINING_LANE0_SET, edp->train_set, edp->link_train.lane_count); udelay(400); if (rk_edp_dpcd_read_link_status(edp, status) < 0) { printk(BIOS_ERR, "displayport link status failed\n"); return -1; } if (rk_edp_channel_eq_ok(status, edp->link_train.lane_count)) { channel_eq = 1; break; } edp_get_adjust_train(status, edp->link_train.lane_count, edp->train_set); } if (!channel_eq) { printk(BIOS_ERR, "channel eq failed\n"); return -1; } else { printk(BIOS_DEBUG, "channel eq at voltage %d pre-emphasis %d\n", edp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK, (edp->train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT); return 0; } } static int rk_edp_init_training(struct rk_edp *edp) { u8 values[3]; int err; err = rk_edp_dpcd_read(edp, DPCD_DPCD_REV, values, sizeof(values)); if (err < 0) return err; edp->link_train.revision = values[0]; edp->link_train.link_rate = values[1]; edp->link_train.lane_count = values[2] & DP_MAX_LANE_COUNT_MASK; edp_debug("max link rate:%d.%dGps max number of lanes:%d\n", edp->link_train.link_rate * 27 / 100, edp->link_train.link_rate * 27 % 100, edp->link_train.lane_count); if ((edp->link_train.link_rate != LINK_RATE_1_62GBPS) && (edp->link_train.link_rate != LINK_RATE_2_70GBPS)) { edp_debug("Rx Max Link Rate is abnormal :%x\n", edp->link_train.link_rate); return -1; } if (edp->link_train.lane_count == 0) { edp_debug("Rx Max Lane count is abnormal :%x\n", edp->link_train.lane_count); return -1; } rk_edp_link_power_up(edp); rk_edp_link_configure(edp); return 0; } static int rk_edp_hw_link_training(struct rk_edp *edp) { u32 val; struct stopwatch sw; /* Set link rate and count as you want to establish*/ write32(&edp->regs->link_bw_set, edp->link_train.link_rate); write32(&edp->regs->lane_count_set, edp->link_train.lane_count); if (rk_edp_link_train_cr(edp)) return -1; if (rk_edp_link_train_ce(edp)) return -1; write32(&edp->regs->dp_hw_link_training, HW_LT_EN); stopwatch_init_msecs_expire(&sw, 10); do { val = read32(&edp->regs->dp_hw_link_training); if (!(val & HW_LT_EN)) break; } while (!stopwatch_expired(&sw)); if (val & HW_LT_ERR_CODE_MASK) { printk(BIOS_ERR, "edp hw link training error: %d\n", val >> HW_LT_ERR_CODE_SHIFT); return -1; } return 0; } static int rk_edp_select_i2c_device(struct rk_edp *edp, unsigned int device_addr, unsigned int val_addr) { u32 val; int retval; /* Set EDID device address */ val = device_addr; write32(&edp->regs->aux_addr_7_0, val); write32(&edp->regs->aux_addr_15_8, 0x0); write32(&edp->regs->aux_addr_19_16, 0x0); /* Set offset from base address of EDID device */ write32(&edp->regs->buf_data[0], val_addr); /* * Set I2C transaction and write address * If bit 3 is 1, DisplayPort transaction. * If Bit 3 is 0, I2C transaction. */ val = AUX_TX_COMM_I2C_TRANSACTION | AUX_TX_COMM_MOT | AUX_TX_COMM_WRITE; write32(&edp->regs->aux_ch_ctl_1, val); /* Start AUX transaction */ retval = rk_edp_start_aux_transaction(edp); if (retval != 0) edp_debug("select_i2c_device Aux Transaction fail!\n"); return retval; } static int rk_edp_read_bytes_from_i2c(struct rk_edp *edp, unsigned int device_addr, unsigned int val_addr, unsigned int count, u8 edid[]) { u32 val; unsigned int i, j; unsigned int cur_data_idx; unsigned int defer = 0; int retval = 0; for (i = 0; i < count; i += 16) { for (j = 0; j < 10; j++) { /* try 10 times */ /* Clear AUX CH data buffer */ val = BUF_CLR; write32(&edp->regs->buf_data_ctl, val); /* Set normal AUX CH command */ clrbits32(&edp->regs->aux_ch_ctl_2, ADDR_ONLY); /* * If Rx sends defer, Tx sends only reads * request without sending address */ if (!defer) retval = rk_edp_select_i2c_device(edp, device_addr, val_addr + i); else defer = 0; /* * Set I2C transaction and write data * If bit 3 is 1, DisplayPort transaction. * If Bit 3 is 0, I2C transaction. */ val = AUX_LENGTH(16) | AUX_TX_COMM_I2C_TRANSACTION | AUX_TX_COMM_READ; write32(&edp->regs->aux_ch_ctl_1, val); /* Start AUX transaction */ retval = rk_edp_start_aux_transaction(edp); if (retval == 0) break; else { edp_debug("Aux Transaction fail!\n"); continue; } /* Check if Rx sends defer */ val = read32(&edp->regs->aux_rx_comm); if (val == AUX_RX_COMM_AUX_DEFER || val == AUX_RX_COMM_I2C_DEFER) { edp_debug("Defer: %d\n\n", val); defer = 1; } } if (retval) return -1; for (cur_data_idx = 0; cur_data_idx < 16; cur_data_idx++) { val = read32(&edp->regs->buf_data[cur_data_idx]); edid[i + cur_data_idx] = (u8)val; } } return retval; } static int rk_edp_read_edid(struct rk_edp *edp, struct edid *edid) { u8 buf[EDID_LENGTH * 2]; u32 edid_size = EDID_LENGTH; int retval; /* Read EDID data */ retval = rk_edp_read_bytes_from_i2c(edp, EDID_ADDR, EDID_HEADER, EDID_LENGTH, &buf[EDID_HEADER]); if (retval != 0) { printk(BIOS_ERR, "EDID Read failed!\n"); return -1; } /* check if edid have extension flag, and read additional EDID data */ if (buf[EDID_EXTENSION_FLAG]) { edid_size += EDID_LENGTH; retval = rk_edp_read_bytes_from_i2c(edp, EDID_ADDR, EDID_LENGTH, EDID_LENGTH, &buf[EDID_LENGTH]); if (retval != 0) { printk(BIOS_ERR, "EDID Read failed!\n"); return -1; } } if (decode_edid(buf, edid_size, edid) != EDID_CONFORMANT) { printk(BIOS_ERR, "%s: Failed to decode EDID.\n", __func__); return -1; } edp_debug("EDID Read success!\n"); return 0; } static int rk_edp_set_link_train(struct rk_edp *edp) { int retval; if (rk_edp_init_training(edp)) { printk(BIOS_ERR, "DP LT init failed!\n"); return -1; } retval = rk_edp_hw_link_training(edp); return retval; } static void rk_edp_init_video(struct rk_edp *edp) { u32 val; val = VSYNC_DET | VID_FORMAT_CHG | VID_CLK_CHG; write32(&edp->regs->common_int_sta_1, val); val = CHA_CRI(4) | CHA_CTRL; write32(&edp->regs->sys_ctl_2, val); val = VID_HRES_TH(2) | VID_VRES_TH(0); write32(&edp->regs->video_ctl_8, val); } static void rk_edp_config_video_slave_mode(struct rk_edp *edp) { clrbits32(&edp->regs->func_en_1, VID_FIFO_FUNC_EN_N | VID_CAP_FUNC_EN_N); } static void rk_edp_set_video_cr_mn(struct rk_edp *edp, enum clock_recovery_m_value_type type, u32 m_value, u32 n_value) { u32 val; if (type == REGISTER_M) { setbits32(&edp->regs->sys_ctl_4, FIX_M_VID); val = m_value & 0xff; write32(&edp->regs->m_vid_0, val); val = (m_value >> 8) & 0xff; write32(&edp->regs->m_vid_1, val); val = (m_value >> 16) & 0xff; write32(&edp->regs->m_vid_2, val); val = n_value & 0xff; write32(&edp->regs->n_vid_0, val); val = (n_value >> 8) & 0xff; write32(&edp->regs->n_vid_1, val); val = (n_value >> 16) & 0xff; write32(&edp->regs->n_vid_2, val); } else { clrbits32(&edp->regs->sys_ctl_4, FIX_M_VID); write32(&edp->regs->n_vid_0, 0x00); write32(&edp->regs->n_vid_1, 0x80); write32(&edp->regs->n_vid_2, 0x00); } } static int rk_edp_is_video_stream_clock_on(struct rk_edp *edp) { u32 val; struct stopwatch sw; stopwatch_init_msecs_expire(&sw, 100); do { val = read32(&edp->regs->sys_ctl_1); /*must write value to update DET_STA bit status*/ write32(&edp->regs->sys_ctl_1, val); val = read32(&edp->regs->sys_ctl_1); if (!(val & DET_STA)) continue; val = read32(&edp->regs->sys_ctl_2); /*must write value to update CHA_STA bit status*/ write32(&edp->regs->sys_ctl_2, val); val = read32(&edp->regs->sys_ctl_2); if (!(val & CHA_STA)) return 0; } while (!stopwatch_expired(&sw)); return -1; } static int rk_edp_is_video_stream_on(struct rk_edp *edp) { u32 val; struct stopwatch sw; stopwatch_init_msecs_expire(&sw, 100); do { val = read32(&edp->regs->sys_ctl_3); /*must write value to update STRM_VALID bit status*/ write32(&edp->regs->sys_ctl_3, val); val = read32(&edp->regs->sys_ctl_3); if (!(val & STRM_VALID)) return 0; } while (!stopwatch_expired(&sw)); return -1; } static int rk_edp_config_video(struct rk_edp *edp) { rk_edp_config_video_slave_mode(edp); if (rk_edp_get_pll_lock_status(edp) == DP_PLL_UNLOCKED) { edp_debug("PLL is not locked yet.\n"); return -1; } if (rk_edp_is_video_stream_clock_on(edp)) return -1; /* Set to use the register calculated M/N video */ rk_edp_set_video_cr_mn(edp, CALCULATED_M, 0, 0); /* For video bist, Video timing must be generated by register */ clrbits32(&edp->regs->video_ctl_10, F_SEL); /* Disable video mute */ clrbits32(&edp->regs->video_ctl_1, VIDEO_MUTE); return 0; } static void rockchip_edp_force_hpd(struct rk_edp *edp) { u32 val; val = read32(&edp->regs->sys_ctl_3); val |= (F_HPD | HPD_CTRL); write32(&edp->regs->sys_ctl_3, val); } static int rockchip_edp_get_plug_in_status(struct rk_edp *edp) { u32 val; val = read32(&edp->regs->sys_ctl_3); if (val & HPD_STATUS) return 1; return 0; } /* * support edp HPD function * some hardware version do not support edp hdp, * we use 360ms to try to get the hpd single now, * if we can not get edp hpd single, it will delay 360ms, * also meet the edp power timing request, to compatible * all of the hardware version */ static void rk_edp_wait_hpd(struct rk_edp *edp) { struct stopwatch hpd; stopwatch_init_msecs_expire(&hpd, 360); do { if (rockchip_edp_get_plug_in_status(edp)) return; udelay(100); } while (!stopwatch_expired(&hpd)); printk(BIOS_DEBUG, "do not get hpd single, force hpd\n"); rockchip_edp_force_hpd(edp); } int rk_edp_get_edid(struct edid *edid) { int i; int retval; /* Read EDID */ for (i = 0; i < 3; i++) { retval = rk_edp_read_edid(&rk_edp, edid); if (retval == 0) break; } return retval; } int rk_edp_prepare(void) { int ret = 0; if (rk_edp_set_link_train(&rk_edp)) { printk(BIOS_ERR, "link train failed!\n"); return -1; } rk_edp_init_video(&rk_edp); ret = rk_edp_config_video(&rk_edp); if (ret) printk(BIOS_ERR, "config video failed\n"); return ret; } int rk_edp_enable(void) { /* Enable video at next frame */ setbits32(&rk_edp.regs->video_ctl_1, VIDEO_EN); return rk_edp_is_video_stream_on(&rk_edp); } void rk_edp_init(void) { rk_edp.regs = (struct rk_edp_regs *)EDP_BASE; rk_edp_wait_hpd(&rk_edp); rk_edp_init_refclk(&rk_edp); rk_edp_init_interrupt(&rk_edp); rk_edp_enable_sw_function(&rk_edp); rk_edp_init_analog_func(&rk_edp); rk_edp_init_aux(&rk_edp); }