/* SPDX-License-Identifier: GPL-2.0-only */ #include <device/mmio.h> #include <boot/coreboot_tables.h> #include <console/uart.h> #include <drivers/uart/uart8250reg.h> struct tegra124_uart { union { uint32_t thr; // Transmit holding register. uint32_t rbr; // Receive buffer register. uint32_t dll; // Divisor latch lsb. }; union { uint32_t ier; // Interrupt enable register. uint32_t dlm; // Divisor latch msb. }; union { uint32_t iir; // Interrupt identification register. uint32_t fcr; // FIFO control register. }; uint32_t lcr; // Line control register. uint32_t mcr; // Modem control register. uint32_t lsr; // Line status register. uint32_t msr; // Modem status register. } __packed; static void tegra124_uart_tx_flush(struct tegra124_uart *uart_ptr); static int tegra124_uart_tst_byte(struct tegra124_uart *uart_ptr); static void tegra124_uart_init(struct tegra124_uart *uart_ptr) { // Use a hardcoded divisor for now. const unsigned int divisor = 221; const uint8_t line_config = UART8250_LCR_WLS_8; // 8n1 tegra124_uart_tx_flush(uart_ptr); // Disable interrupts. write8(&uart_ptr->ier, 0); // Force DTR and RTS to high. write8(&uart_ptr->mcr, UART8250_MCR_DTR | UART8250_MCR_RTS); // Set line configuration, access divisor latches. write8(&uart_ptr->lcr, UART8250_LCR_DLAB | line_config); // Set the divisor. write8(&uart_ptr->dll, divisor & 0xff); write8(&uart_ptr->dlm, (divisor >> 8) & 0xff); // Hide the divisor latches. write8(&uart_ptr->lcr, line_config); // Enable FIFOs, and clear receive and transmit. write8(&uart_ptr->fcr, UART8250_FCR_FIFO_EN | UART8250_FCR_CLEAR_RCVR | UART8250_FCR_CLEAR_XMIT); } static unsigned char tegra124_uart_rx_byte(struct tegra124_uart *uart_ptr) { if (!tegra124_uart_tst_byte(uart_ptr)) return 0; return read8(&uart_ptr->rbr); } static void tegra124_uart_tx_byte(struct tegra124_uart *uart_ptr, unsigned char data) { while (!(read8(&uart_ptr->lsr) & UART8250_LSR_THRE)); write8(&uart_ptr->thr, data); } static void tegra124_uart_tx_flush(struct tegra124_uart *uart_ptr) { while (!(read8(&uart_ptr->lsr) & UART8250_LSR_TEMT)); } static int tegra124_uart_tst_byte(struct tegra124_uart *uart_ptr) { return (read8(&uart_ptr->lsr) & UART8250_LSR_DR) == UART8250_LSR_DR; } uintptr_t uart_platform_base(unsigned int idx) { //Default to UART A unsigned int base = 0x70006000; //UARTs A - E are mapped as index 0 - 4 if ((idx < 5)) { if (idx != 1) { //not UART B base += idx * 0x100; } else { base += 0x40; } } return base; } void uart_init(unsigned int idx) { struct tegra124_uart *uart_ptr = uart_platform_baseptr(idx); tegra124_uart_init(uart_ptr); } unsigned char uart_rx_byte(unsigned int idx) { struct tegra124_uart *uart_ptr = uart_platform_baseptr(idx); return tegra124_uart_rx_byte(uart_ptr); } void uart_tx_byte(unsigned int idx, unsigned char data) { struct tegra124_uart *uart_ptr = uart_platform_baseptr(idx); tegra124_uart_tx_byte(uart_ptr, data); } void uart_tx_flush(unsigned int idx) { struct tegra124_uart *uart_ptr = uart_platform_baseptr(idx); tegra124_uart_tx_flush(uart_ptr); } enum cb_err fill_lb_serial(struct lb_serial *serial) { serial->type = LB_SERIAL_TYPE_MEMORY_MAPPED; serial->baseaddr = uart_platform_base(CONFIG_UART_FOR_CONSOLE); serial->baud = get_uart_baudrate(); serial->regwidth = 4; serial->input_hertz = uart_platform_refclk(); return CB_SUCCESS; }