/*
* Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include "clk_rst.h"
#include "flow.h"
#include "maincpu.h"
#include "pmc.h"
#include "sysctr.h"
static struct clk_rst_ctlr *clk_rst = (void *)TEGRA_CLK_RST_BASE;
static struct flow_ctlr *flow = (void *)TEGRA_FLOW_BASE;
static struct tegra_pmc_regs *pmc = (void *)TEGRA_PMC_BASE;
static struct sysctr_regs *sysctr = (void *)TEGRA_SYSCTR0_BASE;
struct pll_dividers {
u32 n : 10;
u32 m : 8;
u32 p : 4;
u32 cpcon: 4;
u32 : 6;
};
/* Some PLLs have more restrictive divider bit lengths or are missing some
* fields. Make sure to use the right struct in the osc_table definition to get
* compile-time checking, but keep the bits aligned with struct pll_dividers so
* they can be used interchangeably at run time. Add new formats as required. */
struct pllcx_dividers {
u32 n : 8;
u32 : 2;
u32 m : 8;
u32 p : 4;
u32 : 10;
};
struct pllpad_dividers {
u32 n : 10;
u32 m : 5;
u32 : 3;
u32 p : 3;
u32 : 1;
u32 cpcon : 4;
u32 : 6;
};
struct pllu_dividers {
u32 n : 10;
u32 m : 5;
u32 : 3;
u32 p : 1;
u32 : 3;
u32 cpcon : 4;
u32 : 6;
};
union __attribute__((transparent_union)) pll_fields {
u32 raw;
struct pll_dividers div;
struct pllcx_dividers cx;
struct pllpad_dividers pad;
struct pllu_dividers u;
};
/* This table defines the frequency dividers for every PLL to turn the external
* OSC clock into the frequencies defined by TEGRA_PLL*_KHZ in soc/clock.h.
* All PLLs have three dividers (N, M and P), with the governing formula for
* the output frequency being OUT = (IN / m) * N / (2^P).
* Yes, it really is one equation with three unknowns ... */
struct {
int khz;
struct pllcx_dividers pllx; /* target: 1900 MHz */
struct pllpad_dividers pllp; /* target: 408 MHz */
struct pllcx_dividers pllc; /* target: 600 MHz */
struct pllpad_dividers plld; /* target: 925 MHz */
struct pllu_dividers pllu; /* target; 960 MHz */
struct pllcx_dividers plldp; /* target; 270 MHz */
struct pllcx_dividers plld2; /* target; 570 MHz */
} static const osc_table[16] = {
[OSC_FREQ_OSC12]{
.khz = 12000,
.pllx = {.n = 158, .m = 1, .p = 0}, /* 1896 MHz */
.pllp = {.n = 34, .m = 1, .p = 0, .cpcon = 2},
.pllc = {.n = 50, .m = 1, .p = 0},
.plld = {.n = 283, .m = 12, .p = 0, .cpcon = 8}, /* 283 MHz */
.pllu = {.n = 80, .m = 1, .p = 0, .cpcon = 3},
.plldp = {.n = 90, .m = 1, .p = 3}, /* 270 MHz */
.plld2 = {.n = 95, .m = 1, .p = 1}, /* 570 MHz */
},
[OSC_FREQ_OSC13]{
.khz = 13000,
.pllx = {.n = 146, .m = 1, .p = 0}, /* 1898 MHz */
.pllp = {.n = 408, .m = 13, .p = 0, .cpcon = 8},
.pllc = {.n = 231, .m = 5, .p = 0}, /* 600.6 MHz */
.plld = {.n = 283, .m = 13, .p = 0, .cpcon = 8}, /* 283 MHz*/
.pllu = {.n = 960, .m = 13, .p = 0, .cpcon = 12},
.plldp = {.n = 83, .m = 1, .p = 3}, /* 269.75 MHz */
.plld2 = {.n = 88, .m = 1, .p = 1}, /* 572 MHz */
},
[OSC_FREQ_OSC16P8]{
.khz = 16800,
.pllx = {.n = 113, .m = 1, .p = 0}, /* 1898.4 MHz */
.pllp = {.n = 170, .m = 7, .p = 0, .cpcon = 4},
.pllc = {.n = 250, .m = 7, .p = 0},
.plld = {.n = 286, .m = 17, .p = 0, .cpcon = 8}, /* 282.6 MHz*/
.pllu = {.n = 400, .m = 7, .p = 0, .cpcon = 8},
.plldp = {.n = 64, .m = 1, .p = 3}, /* 268.8 MHz */
.plld2 = {.n = 68, .m = 1, .p = 1}, /* 571.2 MHz */
},
[OSC_FREQ_OSC19P2]{
.khz = 19200,
.pllx = {.n = 98, .m = 1, .p = 0}, /* 1881.6 MHz */
.pllp = {.n = 85, .m = 4, .p = 0, .cpcon = 3},
.pllc = {.n = 125, .m = 4, .p = 0},
.plld = {.n = 251, .m = 17, .p = 0, .cpcon = 8}, /* 283.5 MHz */
.pllu = {.n = 50, .m = 1, .p = 0, .cpcon = 2},
.plldp = {.n = 56, .m = 1, .p = 3}, /* 270.75 MHz */
.plld2 = {.n = 59, .m = 1, .p = 1}, /* 570 MHz */
},
[OSC_FREQ_OSC26]{
.khz = 26000,
.pllx = {.n = 73, .m = 1, .p = 0}, /* 1898 MHz */
.pllp = {.n = 204, .m = 13, .p = 0, .cpcon = 5},
.pllc = {.n = 23, .m = 1, .p = 0}, /* 598 MHz */
.plld = {.n = 283, .m = 26, .p = 0, .cpcon = 8}, /* 283 MHz */
.pllu = {.n = 480, .m = 13, .p = 0, .cpcon = 8},
.plldp = {.n = 83, .m = 2, .p = 3}, /* 266.50 MHz */
.plld2 = {.n = 88, .m = 2, .p = 1}, /* 570 MHz */
},
[OSC_FREQ_OSC38P4]{
.khz = 38400,
.pllx = {.n = 98, .m = 1, .p = 0}, /* 1881.6 MHz */
.pllp = {.n = 85, .m = 4, .p = 0, .cpcon = 3},
.pllc = {.n = 125, .m = 4, .p = 0},
.plld = {.n = 125, .m = 17, .p = 0, .cpcon = 8}, /* 282.4 MHz */
.pllu = {.n = 50, .m = 1, .p = 0, .cpcon = 2},
.plldp = {.n = 56, .m = 2, .p = 3}, /* 268 MHz */
.plld2 = {.n = 59, .m = 2, .p = 1}, /* 566 MHz */
},
[OSC_FREQ_OSC48]{
.khz = 48000,
.pllx = {.n = 158, .m = 1, .p = 0}, /* 1896 MHz */
.pllp = {.n = 24, .m = 1, .p = 0, .cpcon = 2},
.pllc = {.n = 50, .m = 1, .p = 0},
.plld = {.n = 71, .m = 12, .p = 0, .cpcon = 8}, /* 284 MHz */
.pllu = {.n = 80, .m = 1, .p = 0, .cpcon = 3},
.plldp = {.n = 90, .m = 4, .p = 3}, /* 264 MHz */
.plld2 = {.n = 95, .m = 4, .p = 1}, /* 570 MHz */
},
};
/* Get the oscillator frequency, from the corresponding hardware
* configuration field. This is actually a per-soc thing. Avoid the
* temptation to make it common.
*/
static u32 clock_get_osc_bits(void)
{
return readl(&clk_rst->osc_ctrl) >> OSC_CTRL_OSC_FREQ_SHIFT;
}
int clock_get_osc_khz(void)
{
return osc_table[clock_get_osc_bits()].khz;
}
void clock_init_arm_generic_timer(void)
{
uint32_t freq = clock_get_osc_khz() * 1000;
// Set the cntfrq register.
__asm__ __volatile__("mcr p15, 0, %0, c14, c0, 0\n" :: "r"(freq));
// Record the system timer frequency.
write32(freq, &sysctr->cntfid0);
// Enable the system counter.
uint32_t cntcr = read32(&sysctr->cntcr);
cntcr |= SYSCTR_CNTCR_EN | SYSCTR_CNTCR_HDBG;
write32(cntcr, &sysctr->cntcr);
}
#define SOR0_CLK_SEL0 (1 << 14)
#define SOR0_CLK_SEL1 (1 << 15)
void sor_clock_stop(void)
{
/* The Serial Output Resource clock has to be off
* before we start the plldp. Learned the hard way.
* FIXME: this has to be cleaned up a bit more.
* Waiting on some new info from Nvidia.
*/
clrbits_le32(&clk_rst->clk_src_sor, SOR0_CLK_SEL0 | SOR0_CLK_SEL1);
}
void sor_clock_start(void)
{
/* uses PLLP, has a non-standard bit layout. */
setbits_le32(&clk_rst->clk_src_sor, SOR0_CLK_SEL0);
}
static void init_pll(u32 *base, u32 *misc, const union pll_fields pll)
{
u32 dividers = pll.div.n << PLL_BASE_DIVN_SHIFT |
pll.div.m << PLL_BASE_DIVM_SHIFT |
pll.div.p << PLL_BASE_DIVP_SHIFT;
/* Write dividers but BYPASS the PLL while we're messing with it. */
writel(dividers | PLL_BASE_BYPASS, base);
/* Set CPCON field (defaults to 0 if it doesn't exist for this PLL) */
writel(pll.div.cpcon << PLL_MISC_CPCON_SHIFT, misc);
/* enable PLL and take it back out of BYPASS (we don't wait for lock
* because we assume that to be done by the time we start using it). */
writel(dividers | PLL_BASE_ENABLE, base);
}
static void init_utmip_pll(void)
{
int khz = clock_get_osc_khz();
/* Shut off PLL crystal clock while we mess with it */
clrbits_le32(&clk_rst->utmip_pll_cfg2, 1 << 30); /* PHY_XTAL_CLKEN */
udelay(1);
write32(80 << 16 | /* (rst) phy_divn */
1 << 8 | /* (rst) phy_divm */
0, &clk_rst->utmip_pll_cfg0); /* 960MHz * 1 / 80 == 12 MHz */
write32(CEIL_DIV(khz, 8000) << 27 | /* pllu_enbl_cnt / 8 (1us) */
0 << 16 | /* PLLU pwrdn */
0 << 14 | /* pll_enable pwrdn */
0 << 12 | /* pll_active pwrdn */
CEIL_DIV(khz, 102) << 0 | /* phy_stbl_cnt / 256 (2.5ms) */
0, &clk_rst->utmip_pll_cfg1);
/* TODO: TRM can't decide if actv is 5us or 10us, keep an eye on it */
write32(0 << 24 | /* SAMP_D/XDEV pwrdn */
CEIL_DIV(khz, 3200) << 18 | /* phy_actv_cnt / 16 (5us) */
CEIL_DIV(khz, 256) << 6 | /* pllu_stbl_cnt / 256 (1ms) */
0 << 4 | /* SAMP_C/USB3 pwrdn */
0 << 2 | /* SAMP_B/XHOST pwrdn */
0 << 0 | /* SAMP_A/USBD pwrdn */
0, &clk_rst->utmip_pll_cfg2);
setbits_le32(&clk_rst->utmip_pll_cfg2, 1 << 30); /* PHY_XTAL_CLKEN */
}
/* Graphics just has to be different. There's a few more bits we
* need to set in here, but it makes sense just to restrict all the
* special bits to this one function.
*/
static void graphics_pll(void)
{
int osc = clock_get_osc_bits();
u32 *cfg = &clk_rst->plldp_ss_cfg;
/* the vendor code sets the dither bit (28)
* an undocumented bit (24)
* and clamp while we mess with it (22)
* Dither is pretty important to display port
* so we really do need to handle these bits.
* I'm not willing to not clamp it, even if
* it might "mostly work" with it not set,
* I don't want to find out in a few months
* that it is needed.
*/
u32 scfg = (1<<28) | (1<<24) | (1<<22);
writel(scfg, cfg);
init_pll(&clk_rst->plldp_base, &clk_rst->plldp_misc, osc_table[osc].plldp);
/* leave dither and undoc bits set, release clamp */
scfg = (1<<28) | (1<<24);
writel(scfg, cfg);
/* set lock bit */
setbits_le32(&clk_rst->plldp_misc, PLLDPD2_MISC_LOCK_ENABLE);
/* init clock source for disp1 */
/* init plld (the actual output is plld_out0 that is 1/2 of plld. */
init_pll(&clk_rst->plld_base, &clk_rst->plld_misc, osc_table[osc].plld);
setbits_le32(&clk_rst->plld_misc, PLLUD_MISC_LOCK_ENABLE);
setbits_le32(&clk_rst->plld_misc, PLLD_MISC_CLK_ENABLE);
udelay(10); /* wait for plld ready */
}
/* Initialize the UART and put it on CLK_M so we can use it during clock_init().
* Will later move it to PLLP in clock_config(). The divisor must be very small
* to accomodate 12KHz OSCs, so we override the 16.0 UART divider with the 15.1
* CLK_SOURCE divider to get more precision. (This might still not be enough for
* some OSCs... if you use 13KHz, be prepared to have a bad time.) The 1800 has
* been determined through trial and error (must lead to div 13 at 24MHz). */
void clock_early_uart(void)
{
write32(CLK_M << CLK_SOURCE_SHIFT | CLK_UART_DIV_OVERRIDE |
CLK_DIVIDER(TEGRA_CLK_M_KHZ, 1800), &clk_rst->clk_src_uarta);
setbits_le32(&clk_rst->clk_out_enb_l, CLK_L_UARTA);
udelay(2);
clrbits_le32(&clk_rst->rst_dev_l, CLK_L_UARTA);
}
/* Enable output clock (CLK1~3) for external peripherals. */
void clock_external_output(int clk_id)
{
switch (clk_id) {
case 1:
setbits_le32(&pmc->clk_out_cntrl, 1 << 2);
break;
case 2:
setbits_le32(&pmc->clk_out_cntrl, 1 << 10);
break;
case 3:
setbits_le32(&pmc->clk_out_cntrl, 1 << 18);
break;
default:
printk(BIOS_CRIT, "ERROR: Unknown output clock id %d\n",
clk_id);
break;
}
}
void clock_cpu0_config_and_reset(void *entry)
{
void * const evp_cpu_reset = (uint8_t *)TEGRA_EVP_BASE + 0x100;
write32(CONFIG_STACK_TOP, &maincpu_stack_pointer);
write32((uintptr_t)entry, &maincpu_entry_point);
write32((uintptr_t)&maincpu_setup, evp_cpu_reset);
/* Set active CPU cluster to G */
clrbits_le32(&flow->cluster_control, 1);
// Set up cclk_brst and divider.
write32((CRC_CCLK_BRST_POL_PLLX_OUT0 << 0) |
(CRC_CCLK_BRST_POL_PLLX_OUT0 << 4) |
(CRC_CCLK_BRST_POL_PLLX_OUT0 << 8) |
(CRC_CCLK_BRST_POL_PLLX_OUT0 << 12) |
(CRC_CCLK_BRST_POL_CPU_STATE_RUN << 28),
&clk_rst->cclk_brst_pol);
write32(CRC_SUPER_CCLK_DIVIDER_SUPER_CDIV_ENB,
&clk_rst->super_cclk_div);
// Enable the clocks for CPUs 0-3.
uint32_t cpu_cmplx_clr = read32(&clk_rst->clk_cpu_cmplx_clr);
cpu_cmplx_clr |= CRC_CLK_CLR_CPU0_STP | CRC_CLK_CLR_CPU1_STP |
CRC_CLK_CLR_CPU2_STP | CRC_CLK_CLR_CPU3_STP;
write32(cpu_cmplx_clr, &clk_rst->clk_cpu_cmplx_clr);
// Enable other CPU related clocks.
setbits_le32(&clk_rst->clk_out_enb_l, CLK_L_CPU);
setbits_le32(&clk_rst->clk_out_enb_v, CLK_V_CPUG);
// Disable the reset on the non-CPU parts of the fast cluster.
write32(CRC_RST_CPUG_CLR_NONCPU,
&clk_rst->rst_cpug_cmplx_clr);
// Disable the various resets on the CPUs.
write32(CRC_RST_CPUG_CLR_CPU0 | CRC_RST_CPUG_CLR_CPU1 |
CRC_RST_CPUG_CLR_CPU2 | CRC_RST_CPUG_CLR_CPU3 |
CRC_RST_CPUG_CLR_DBG0 | CRC_RST_CPUG_CLR_DBG1 |
CRC_RST_CPUG_CLR_DBG2 | CRC_RST_CPUG_CLR_DBG3 |
CRC_RST_CPUG_CLR_CORE0 | CRC_RST_CPUG_CLR_CORE1 |
CRC_RST_CPUG_CLR_CORE2 | CRC_RST_CPUG_CLR_CORE3 |
CRC_RST_CPUG_CLR_CX0 | CRC_RST_CPUG_CLR_CX1 |
CRC_RST_CPUG_CLR_CX2 | CRC_RST_CPUG_CLR_CX3 |
CRC_RST_CPUG_CLR_L2 | CRC_RST_CPUG_CLR_PDBG,
&clk_rst->rst_cpug_cmplx_clr);
}
void clock_halt_avp(void)
{
for (;;) {
write32(FLOW_EVENT_JTAG | FLOW_EVENT_LIC_IRQ |
FLOW_EVENT_GIC_IRQ | FLOW_MODE_WAITEVENT,
&flow->halt_cop_events);
}
}
void clock_init(void)
{
u32 osc = clock_get_osc_bits();
/* Set PLLC dynramp_step A to 0x2b and B to 0xb (from U-Boot -- why? */
writel(0x2b << 17 | 0xb << 9, &clk_rst->pllc_misc2);
/* Max out the AVP clock before everything else (need PLLC for that). */
init_pll(&clk_rst->pllc_base, &clk_rst->pllc_misc, osc_table[osc].pllc);
/* Be more careful with processor clock, wait for the lock. (~10us) */
setbits_le32(&clk_rst->pllc_misc, PLLC_MISC_LOCK_ENABLE);
while (!(read32(&clk_rst->pllc_base) & PLL_BASE_LOCK)) /* wait */;
/* Typical ratios are 1:2:2 or 1:2:3 sclk:hclk:pclk (See: APB DMA
* features section in the TRM). */
write32(1 << HCLK_DIVISOR_SHIFT | 0 << PCLK_DIVISOR_SHIFT,
&clk_rst->clk_sys_rate); /* pclk = hclk = sclk/2 */
write32(0 << SCLK_DIVIDEND_SHIFT |
(CEIL_DIV(TEGRA_PLLC_KHZ, 300000) - 1) << SCLK_DIVISOR_SHIFT
| SCLK_DIV_ENB, &clk_rst->super_sclk_div);
write32(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT |
SCLK_SOURCE_PLLC_OUT0 << SCLK_RUN_SHIFT,
&clk_rst->sclk_brst_pol); /* sclk = 300 MHz */
/* Change the oscillator drive strength (from U-Boot -- why?) */
clrsetbits_le32(&clk_rst->osc_ctrl, OSC_XOFS_MASK,
OSC_DRIVE_STRENGTH << OSC_XOFS_SHIFT);
/*
* Ambiguous quote from u-boot. TODO: what's this mean?
* "should update same value in PMC_OSC_EDPD_OVER XOFS
* field for warmboot "
*/
clrsetbits_le32(&pmc->osc_edpd_over, PMC_OSC_EDPD_OVER_XOFS_MASK,
OSC_DRIVE_STRENGTH << PMC_OSC_EDPD_OVER_XOFS_SHIFT);
/* Disable IDDQ for PLLX before we set it up (from U-Boot -- why?) */
clrbits_le32(&clk_rst->pllx_misc3, PLLX_IDDQ_MASK);
/* Set up PLLP_OUT(1|2|3|4) divisor to generate (9.6|48|102|204)MHz */
write32((CLK_DIVIDER(TEGRA_PLLP_KHZ, 9600) << PLL_OUT_RATIO_SHIFT |
PLL_OUT_OVR | PLL_OUT_CLKEN | PLL_OUT_RSTN) << PLL_OUT1_SHIFT |
(CLK_DIVIDER(TEGRA_PLLP_KHZ, 48000) << PLL_OUT_RATIO_SHIFT |
PLL_OUT_OVR | PLL_OUT_CLKEN | PLL_OUT_RSTN) << PLL_OUT2_SHIFT,
&clk_rst->pllp_outa);
write32((CLK_DIVIDER(TEGRA_PLLP_KHZ, 102000) << PLL_OUT_RATIO_SHIFT |
PLL_OUT_OVR | PLL_OUT_CLKEN | PLL_OUT_RSTN) << PLL_OUT3_SHIFT |
(CLK_DIVIDER(TEGRA_PLLP_KHZ, 204000) << PLL_OUT_RATIO_SHIFT |
PLL_OUT_OVR | PLL_OUT_CLKEN | PLL_OUT_RSTN) << PLL_OUT4_SHIFT,
&clk_rst->pllp_outb);
init_pll(&clk_rst->pllx_base, &clk_rst->pllx_misc, osc_table[osc].pllx);
init_pll(&clk_rst->pllp_base, &clk_rst->pllp_misc, osc_table[osc].pllp);
init_pll(&clk_rst->pllu_base, &clk_rst->pllu_misc, osc_table[osc].pllu);
init_utmip_pll();
graphics_pll();
}
void clock_enable_clear_reset(u32 l, u32 h, u32 u, u32 v, u32 w, u32 x)
{
if (l) writel(l, &clk_rst->clk_enb_l_set);
if (h) writel(h, &clk_rst->clk_enb_h_set);
if (u) writel(u, &clk_rst->clk_enb_u_set);
if (v) writel(v, &clk_rst->clk_enb_v_set);
if (w) writel(w, &clk_rst->clk_enb_w_set);
if (x) writel(x, &clk_rst->clk_enb_x_set);
/* Give clocks time to stabilize. */
udelay(IO_STABILIZATION_DELAY);
if (l) writel(l, &clk_rst->rst_dev_l_clr);
if (h) writel(h, &clk_rst->rst_dev_h_clr);
if (u) writel(u, &clk_rst->rst_dev_u_clr);
if (v) writel(v, &clk_rst->rst_dev_v_clr);
if (w) writel(w, &clk_rst->rst_dev_w_clr);
if (x) writel(x, &clk_rst->rst_dev_x_clr);
}