/*
* Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
* Copyright 2014 Google Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include "clk_rst.h"
#include "flow.h"
#include "maincpu.h"
#include "pmc.h"
#include "sysctr.h"
static struct clk_rst_ctlr *clk_rst = (void *)TEGRA_CLK_RST_BASE;
static struct flow_ctlr *flow = (void *)TEGRA_FLOW_BASE;
static struct tegra_pmc_regs *pmc = (void *)TEGRA_PMC_BASE;
static struct sysctr_regs *sysctr = (void *)TEGRA_SYSCTR0_BASE;
struct pll_dividers {
u32 n : 10;
u32 m : 8;
u32 p : 4;
u32 cpcon : 4;
u32 lfcon : 4;
u32 : 2;
};
/* Some PLLs have more restrictive divider bit lengths or are missing some
* fields. Make sure to use the right struct in the osc_table definition to get
* compile-time checking, but keep the bits aligned with struct pll_dividers so
* they can be used interchangeably at run time. Add new formats as required. */
struct pllcx_dividers {
u32 n : 8;
u32 : 2;
u32 m : 8;
u32 p : 4;
u32 : 10;
};
struct pllpad_dividers {
u32 n : 10;
u32 m : 5;
u32 : 3;
u32 p : 3;
u32 : 1;
u32 cpcon : 4;
u32 : 6;
};
struct pllu_dividers {
u32 n : 10;
u32 m : 5;
u32 : 3;
u32 p : 1;
u32 : 3;
u32 cpcon : 4;
u32 lfcon : 4;
u32 : 2;
};
union __attribute__((transparent_union)) pll_fields {
u32 raw;
struct pll_dividers div;
struct pllcx_dividers cx;
struct pllpad_dividers pad;
struct pllu_dividers u;
};
/* This table defines the frequency dividers for every PLL to turn the external
* OSC clock into the frequencies defined by TEGRA_PLL*_KHZ in soc/clock.h.
* All PLLs have three dividers (N, M and P), with the governing formula for
* the output frequency being OUT = (IN / m) * N / (2^P).
* Yes, it really is one equation with three unknowns ... */
struct {
int khz;
struct pllcx_dividers pllx; /* target: CONFIG_PLLX_KHZ */
struct pllcx_dividers pllc; /* target: 600 MHz */
struct pllu_dividers pllu; /* target; 960 MHz */
struct pllcx_dividers plldp; /* target; 270 MHz */
/* Based on T124 TRM (to be updatd), PLLP is set to 408MHz in HW.
* Unless configuring PLLP to a frequency other than 408MHz,
* software configuration on PLLP is unneeded. */
} static const osc_table[16] = {
[OSC_FREQ_OSC12]{
.khz = 12000,
.pllx = {.n = TEGRA_PLLX_KHZ / 12000, .m = 1, .p = 0},
.pllc = {.n = 50, .m = 1, .p = 0},
.pllu = {.n = 960, .m = 12, .p = 0, .cpcon = 12, .lfcon = 2},
.plldp = {.n = 90, .m = 1, .p = 3},
},
[OSC_FREQ_OSC13]{
.khz = 13000,
.pllx = {.n = TEGRA_PLLX_KHZ / 13000, .m = 1, .p = 0},
.pllc = {.n = 231, .m = 5, .p = 0}, /* 600.6 MHz */
.pllu = {.n = 960, .m = 13, .p = 0, .cpcon = 12, .lfcon = 2},
.plldp = {.n = 83, .m = 1, .p = 3}, /* 269.75 MHz */
},
[OSC_FREQ_OSC16P8]{
.khz = 16800,
.pllx = {.n = TEGRA_PLLX_KHZ / 16800, .m = 1, .p = 0},
.pllc = {.n = 250, .m = 7, .p = 0},
.pllu = {.n = 400, .m = 7, .p = 0, .cpcon = 5, .lfcon = 2},
.plldp = {.n = 64, .m = 1, .p = 3}, /* 268.8 MHz */
},
[OSC_FREQ_OSC19P2]{
.khz = 19200,
.pllx = {.n = TEGRA_PLLX_KHZ / 19200, .m = 1, .p = 0},
.pllc = {.n = 125, .m = 4, .p = 0},
.pllu = {.n = 200, .m = 4, .p = 0, .cpcon = 3, .lfcon = 2},
.plldp = {.n = 56, .m = 1, .p = 3}, /* 270.75 MHz */
},
[OSC_FREQ_OSC26]{
.khz = 26000,
.pllx = {.n = TEGRA_PLLX_KHZ / 26000, .m = 1, .p = 0},
.pllc = {.n = 23, .m = 1, .p = 0}, /* 598 MHz */
.pllu = {.n = 960, .m = 26, .p = 0, .cpcon = 12, .lfcon = 2},
.plldp = {.n = 83, .m = 2, .p = 3}, /* 266.50 MHz */
},
[OSC_FREQ_OSC38P4]{
.khz = 38400,
/*
* There is a predivide by 2 before this PLL. Its values
* should match the 19.2MHz values.
*/
.pllx = {.n = TEGRA_PLLX_KHZ / 19200, .m = 1, .p = 0},
.pllc = {.n = 125, .m = 4, .p = 0},
.pllu = {.n = 200, .m = 4, .p = 0, .cpcon = 3, .lfcon = 2},
.plldp = {.n = 56, .m = 2, .p = 3}, /* 268 MHz */
},
[OSC_FREQ_OSC48]{
.khz = 48000,
/*
* There is a predivide by 4 before this PLL. Its values
* should match the 12MHz values.
*/
.pllx = {.n = TEGRA_PLLX_KHZ / 12000, .m = 1, .p = 0},
.pllc = {.n = 50, .m = 1, .p = 0},
.pllu = {.n = 960, .m = 12, .p = 0, .cpcon = 12, .lfcon = 2},
.plldp = {.n = 90, .m = 4, .p = 3}, /* 264 MHz */
},
};
/* Get the oscillator frequency, from the corresponding hardware
* configuration field. This is actually a per-soc thing. Avoid the
* temptation to make it common.
*/
static u32 clock_get_osc_bits(void)
{
return readl(&clk_rst->osc_ctrl) >> OSC_CTRL_OSC_FREQ_SHIFT;
}
int clock_get_osc_khz(void)
{
return osc_table[clock_get_osc_bits()].khz;
}
void clock_init_arm_generic_timer(void)
{
uint32_t freq = clock_get_osc_khz() * 1000;
// Set the cntfrq register.
__asm__ __volatile__("mcr p15, 0, %0, c14, c0, 0\n" :: "r"(freq));
// Record the system timer frequency.
write32(freq, &sysctr->cntfid0);
// Enable the system counter.
uint32_t cntcr = read32(&sysctr->cntcr);
cntcr |= SYSCTR_CNTCR_EN | SYSCTR_CNTCR_HDBG;
write32(cntcr, &sysctr->cntcr);
}
#define SOR0_CLK_SEL0 (1 << 14)
#define SOR0_CLK_SEL1 (1 << 15)
void sor_clock_stop(void)
{
/* The Serial Output Resource clock has to be off
* before we start the plldp. Learned the hard way.
* FIXME: this has to be cleaned up a bit more.
* Waiting on some new info from Nvidia.
*/
clrbits_le32(&clk_rst->clk_src_sor, SOR0_CLK_SEL0 | SOR0_CLK_SEL1);
}
void sor_clock_start(void)
{
/* uses PLLP, has a non-standard bit layout. */
setbits_le32(&clk_rst->clk_src_sor, SOR0_CLK_SEL0);
}
static void init_pll(u32 *base, u32 *misc, const union pll_fields pll, u32 lock)
{
u32 dividers = pll.div.n << PLL_BASE_DIVN_SHIFT |
pll.div.m << PLL_BASE_DIVM_SHIFT |
pll.div.p << PLL_BASE_DIVP_SHIFT;
u32 misc_con = pll.div.cpcon << PLL_MISC_CPCON_SHIFT |
pll.div.lfcon << PLL_MISC_LFCON_SHIFT;
/* Write dividers but BYPASS the PLL while we're messing with it. */
writel(dividers | PLL_BASE_BYPASS, base);
/*
* Set Lock bit, CPCON and LFCON fields (default to 0 if it doesn't
* exist for this PLL)
*/
writel(lock | misc_con, misc);
/* Enable PLL and take it back out of BYPASS */
writel(dividers | PLL_BASE_ENABLE, base);
/* Wait for lock ready */
while (!(readl(base) & PLL_BASE_LOCK));
}
static void init_utmip_pll(void)
{
int khz = clock_get_osc_khz();
/* Shut off PLL crystal clock while we mess with it */
clrbits_le32(&clk_rst->utmip_pll_cfg2, 1 << 30); /* PHY_XTAL_CLKEN */
udelay(1);
write32(80 << 16 | /* (rst) phy_divn */
1 << 8 | /* (rst) phy_divm */
0, &clk_rst->utmip_pll_cfg0); /* 960MHz * 1 / 80 == 12 MHz */
write32(CEIL_DIV(khz, 8000) << 27 | /* pllu_enbl_cnt / 8 (1us) */
0 << 16 | /* PLLU pwrdn */
0 << 14 | /* pll_enable pwrdn */
0 << 12 | /* pll_active pwrdn */
CEIL_DIV(khz, 102) << 0 | /* phy_stbl_cnt / 256 (2.5ms) */
0, &clk_rst->utmip_pll_cfg1);
/* TODO: TRM can't decide if actv is 5us or 10us, keep an eye on it */
write32(0 << 24 | /* SAMP_D/XDEV pwrdn */
CEIL_DIV(khz, 3200) << 18 | /* phy_actv_cnt / 16 (5us) */
CEIL_DIV(khz, 256) << 6 | /* pllu_stbl_cnt / 256 (1ms) */
0 << 4 | /* SAMP_C/USB3 pwrdn */
0 << 2 | /* SAMP_B/XHOST pwrdn */
0 << 0 | /* SAMP_A/USBD pwrdn */
0, &clk_rst->utmip_pll_cfg2);
setbits_le32(&clk_rst->utmip_pll_cfg2, 1 << 30); /* PHY_XTAL_CLKEN */
}
/* Graphics just has to be different. There's a few more bits we
* need to set in here, but it makes sense just to restrict all the
* special bits to this one function.
*/
static void graphics_pll(void)
{
int osc = clock_get_osc_bits();
u32 *cfg = &clk_rst->plldp_ss_cfg;
/* the vendor code sets the dither bit (28)
* an undocumented bit (24)
* and clamp while we mess with it (22)
* Dither is pretty important to display port
* so we really do need to handle these bits.
* I'm not willing to not clamp it, even if
* it might "mostly work" with it not set,
* I don't want to find out in a few months
* that it is needed.
*/
u32 scfg = (1<<28) | (1<<24) | (1<<22);
writel(scfg, cfg);
init_pll(&clk_rst->plldp_base, &clk_rst->plldp_misc,
osc_table[osc].plldp, PLLDPD2_MISC_LOCK_ENABLE);
/* leave dither and undoc bits set, release clamp */
scfg = (1<<28) | (1<<24);
writel(scfg, cfg);
/* disp1 will be set when panel information (pixel clock) is
* retrieved (clock_display).
*/
}
/* Init PLLD clock source. */
int
clock_display(u32 frequency)
{
/**
* plld (fo) = vco >> p, where 500MHz < vco < 1000MHz
* = (cf * n) >> p, where 1MHz < cf < 6MHz
* = ((ref / m) * n) >> p
*
* Assume p = 0, find (m, n). since m has only 5 bits, we can iterate
* all possible values. Note Tegra 124 supports 11 bits for n, but our
* pll_fields has only 10 bits for n.
*
* Note values undershoot or overshoot target output frequency may not
* work if the value is not in "safe" range in panel specification, so
* we want exact match.
*/
struct pllpad_dividers plld = { 0 };
u32 ref = clock_get_osc_khz() * 1000, m, n;
u32 cf, vco = frequency;
const u32 max_m = 1 << 5, max_n = 1 << 10, mhz = 1000 * 1000,
min_vco = 500 * mhz, max_vco = 1000 * mhz,
min_cf = 1 * mhz, max_cf = 6 * mhz;
/* TODO(hungte) Replace this by clock_get_pll_input_khz */
switch (clock_get_osc_bits()) {
case OSC_FREQ_OSC48:
ref /= 4;
break;
case OSC_FREQ_OSC38P4:
ref /= 2;
break;
}
if (vco < min_vco || vco > max_vco) {
printk(BIOS_ERR, "%s: VCO (%d) out of range. Cannot support.\n",
__func__, vco);
return -1;
}
for (m = 1; m < max_m; m++) {
cf = ref / m;
if (cf < min_cf)
break;
n = vco / cf;
if (vco != cf * n || n >= max_n || cf > max_cf)
continue;
plld.m = m;
plld.n = n;
if (n < 50)
plld.cpcon = 2;
else if (n < 300)
plld.cpcon = 3;
else if (n < 600)
plld.cpcon = 8;
else
plld.cpcon = 12;
printk(BIOS_DEBUG, "%s: PLLD=%u ref=%u, m/n/p/cpcon="
"%u/%u/%u/%u\n", __func__,
(ref / plld.m * plld.n) >> plld.p, ref,
plld.m, plld.n, plld.p, plld.cpcon);
init_pll(&clk_rst->plld_base, &clk_rst->plld_misc, plld,
(PLLUD_MISC_LOCK_ENABLE | PLLD_MISC_CLK_ENABLE));
return 0;
}
printk(BIOS_ERR, "%s: Failed to match output frequency %u.\n",
__func__, frequency);
return -1;
}
/* Initialize the UART and put it on CLK_M so we can use it during clock_init().
* Will later move it to PLLP in clock_config(). The divisor must be very small
* to accomodate 12KHz OSCs, so we override the 16.0 UART divider with the 15.1
* CLK_SOURCE divider to get more precision. (This might still not be enough for
* some OSCs... if you use 13KHz, be prepared to have a bad time.) The 1900 has
* been determined through trial and error (must lead to div 13 at 24MHz). */
void clock_early_uart(void)
{
write32(CLK_M << CLK_SOURCE_SHIFT | CLK_UART_DIV_OVERRIDE |
CLK_DIVIDER(TEGRA_CLK_M_KHZ, 1900), &clk_rst->clk_src_uarta);
setbits_le32(&clk_rst->clk_out_enb_l, CLK_L_UARTA);
udelay(2);
clrbits_le32(&clk_rst->rst_dev_l, CLK_L_UARTA);
}
/* Enable output clock (CLK1~3) for external peripherals. */
void clock_external_output(int clk_id)
{
switch (clk_id) {
case 1:
setbits_le32(&pmc->clk_out_cntrl, 1 << 2);
break;
case 2:
setbits_le32(&pmc->clk_out_cntrl, 1 << 10);
break;
case 3:
setbits_le32(&pmc->clk_out_cntrl, 1 << 18);
break;
default:
printk(BIOS_CRIT, "ERROR: Unknown output clock id %d\n",
clk_id);
break;
}
}
/* Start PLLM for SDRAM. */
void clock_sdram(u32 m, u32 n, u32 p, u32 setup, u32 ph45, u32 ph90,
u32 ph135, u32 kvco, u32 kcp, u32 stable_time, u32 emc_source,
u32 same_freq)
{
u32 misc1 = ((setup << PLLM_MISC1_SETUP_SHIFT) |
(ph45 << PLLM_MISC1_PD_LSHIFT_PH45_SHIFT) |
(ph90 << PLLM_MISC1_PD_LSHIFT_PH90_SHIFT) |
(ph135 << PLLM_MISC1_PD_LSHIFT_PH135_SHIFT)),
misc2 = ((kvco << PLLM_MISC2_KVCO_SHIFT) |
(kcp << PLLM_MISC2_KCP_SHIFT)),
base;
if (same_freq)
emc_source |= CLK_SOURCE_EMC_MC_EMC_SAME_FREQ;
else
emc_source &= ~CLK_SOURCE_EMC_MC_EMC_SAME_FREQ;
/*
* Note PLLM_BASE.PLLM_OUT1_RSTN must be in RESET_ENABLE mode, and
* PLLM_BASE.ENABLE must be in DISABLE state (both are the default
* values after coldboot reset).
*/
writel(misc1, &clk_rst->pllm_misc1);
writel(misc2, &clk_rst->pllm_misc2);
/* PLLM.BASE needs BYPASS=0, different from general init_pll */
base = readl(&clk_rst->pllm_base);
base &= ~(PLLCMX_BASE_DIVN_MASK | PLLCMX_BASE_DIVM_MASK |
PLLM_BASE_DIVP_MASK | PLL_BASE_BYPASS);
base |= ((m << PLL_BASE_DIVM_SHIFT) | (n << PLL_BASE_DIVN_SHIFT) |
(p << PLL_BASE_DIVP_SHIFT));
writel(base, &clk_rst->pllm_base);
setbits_le32(&clk_rst->pllm_base, PLL_BASE_ENABLE);
/* stable_time is required, before we can start to check lock. */
udelay(stable_time);
while (!(readl(&clk_rst->pllm_base) & PLL_BASE_LOCK)) {
udelay(1);
}
/*
* After PLLM reports being locked, we have to delay 10us before
* enabling PLLM_OUT.
*/
udelay(10);
/* Put OUT1 out of reset state (start to output). */
setbits_le32(&clk_rst->pllm_out, PLLM_OUT1_RSTN_RESET_DISABLE);
/* Enable and start MEM(MC) and EMC. */
clock_enable_clear_reset(0, CLK_H_MEM | CLK_H_EMC, 0, 0, 0, 0);
writel(emc_source, &clk_rst->clk_src_emc);
udelay(IO_STABILIZATION_DELAY);
}
void clock_cpu0_config_and_reset(void *entry)
{
void * const evp_cpu_reset = (uint8_t *)TEGRA_EVP_BASE + 0x100;
write32(CONFIG_STACK_TOP, &maincpu_stack_pointer);
write32((uintptr_t)entry, &maincpu_entry_point);
write32((uintptr_t)&maincpu_setup, evp_cpu_reset);
/* Set active CPU cluster to G */
clrbits_le32(&flow->cluster_control, 1);
// Set up cclk_brst and divider.
write32((CRC_CCLK_BRST_POL_PLLX_OUT0 << 0) |
(CRC_CCLK_BRST_POL_PLLX_OUT0 << 4) |
(CRC_CCLK_BRST_POL_PLLX_OUT0 << 8) |
(CRC_CCLK_BRST_POL_PLLX_OUT0 << 12) |
(CRC_CCLK_BRST_POL_CPU_STATE_RUN << 28),
&clk_rst->cclk_brst_pol);
write32(CRC_SUPER_CCLK_DIVIDER_SUPER_CDIV_ENB,
&clk_rst->super_cclk_div);
// Enable the clocks for CPUs 0-3.
uint32_t cpu_cmplx_clr = read32(&clk_rst->clk_cpu_cmplx_clr);
cpu_cmplx_clr |= CRC_CLK_CLR_CPU0_STP | CRC_CLK_CLR_CPU1_STP |
CRC_CLK_CLR_CPU2_STP | CRC_CLK_CLR_CPU3_STP;
write32(cpu_cmplx_clr, &clk_rst->clk_cpu_cmplx_clr);
// Enable other CPU related clocks.
setbits_le32(&clk_rst->clk_out_enb_l, CLK_L_CPU);
setbits_le32(&clk_rst->clk_out_enb_v, CLK_V_CPUG);
setbits_le32(&clk_rst->clk_out_enb_v, CLK_V_CPULP);
// Disable the reset on the non-CPU parts of the fast cluster.
write32(CRC_RST_CPUG_CLR_NONCPU,
&clk_rst->rst_cpug_cmplx_clr);
// Disable the various resets on the CPUs.
write32(CRC_RST_CPUG_CLR_CPU0 | CRC_RST_CPUG_CLR_CPU1 |
CRC_RST_CPUG_CLR_CPU2 | CRC_RST_CPUG_CLR_CPU3 |
CRC_RST_CPUG_CLR_DBG0 | CRC_RST_CPUG_CLR_DBG1 |
CRC_RST_CPUG_CLR_DBG2 | CRC_RST_CPUG_CLR_DBG3 |
CRC_RST_CPUG_CLR_CORE0 | CRC_RST_CPUG_CLR_CORE1 |
CRC_RST_CPUG_CLR_CORE2 | CRC_RST_CPUG_CLR_CORE3 |
CRC_RST_CPUG_CLR_CX0 | CRC_RST_CPUG_CLR_CX1 |
CRC_RST_CPUG_CLR_CX2 | CRC_RST_CPUG_CLR_CX3 |
CRC_RST_CPUG_CLR_L2 | CRC_RST_CPUG_CLR_PDBG,
&clk_rst->rst_cpug_cmplx_clr);
// Disable the reset on the non-CPU parts of the slow cluster.
write32(CRC_RST_CPULP_CLR_NONCPU,
&clk_rst->rst_cpulp_cmplx_clr);
// Disable the various resets on the LP CPU.
write32(CRC_RST_CPULP_CLR_CPU0 | CRC_RST_CPULP_CLR_DBG0 |
CRC_RST_CPULP_CLR_CORE0 | CRC_RST_CPULP_CLR_CX0 |
CRC_RST_CPULP_CLR_L2 | CRC_RST_CPULP_CLR_PDBG,
&clk_rst->rst_cpulp_cmplx_clr);
}
void clock_halt_avp(void)
{
for (;;) {
write32(FLOW_EVENT_JTAG | FLOW_EVENT_LIC_IRQ |
FLOW_EVENT_GIC_IRQ | FLOW_MODE_WAITEVENT,
&flow->halt_cop_events);
}
}
void clock_init(void)
{
u32 osc = clock_get_osc_bits();
/* Set PLLC dynramp_step A to 0x2b and B to 0xb (from U-Boot -- why? */
writel(0x2b << 17 | 0xb << 9, &clk_rst->pllc_misc2);
/* Max out the AVP clock before everything else (need PLLC for that). */
init_pll(&clk_rst->pllc_base, &clk_rst->pllc_misc,
osc_table[osc].pllc, PLLC_MISC_LOCK_ENABLE);
/* Typical ratios are 1:2:2 or 1:2:3 sclk:hclk:pclk (See: APB DMA
* features section in the TRM). */
write32(1 << HCLK_DIVISOR_SHIFT | 0 << PCLK_DIVISOR_SHIFT,
&clk_rst->clk_sys_rate); /* pclk = hclk = sclk/2 */
write32(CLK_DIVIDER(TEGRA_PLLC_KHZ, 300000) << PLL_OUT_RATIO_SHIFT |
PLL_OUT_CLKEN | PLL_OUT_RSTN, &clk_rst->pllc_out);
write32(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT |
SCLK_SOURCE_PLLC_OUT1 << SCLK_RUN_SHIFT,
&clk_rst->sclk_brst_pol); /* sclk = 300 MHz */
/* Change the oscillator drive strength (from U-Boot -- why?) */
clrsetbits_le32(&clk_rst->osc_ctrl, OSC_XOFS_MASK,
OSC_DRIVE_STRENGTH << OSC_XOFS_SHIFT);
/*
* Ambiguous quote from u-boot. TODO: what's this mean?
* "should update same value in PMC_OSC_EDPD_OVER XOFS
* field for warmboot "
*/
clrsetbits_le32(&pmc->osc_edpd_over, PMC_OSC_EDPD_OVER_XOFS_MASK,
OSC_DRIVE_STRENGTH << PMC_OSC_EDPD_OVER_XOFS_SHIFT);
/* Disable IDDQ for PLLX before we set it up (from U-Boot -- why?) */
clrbits_le32(&clk_rst->pllx_misc3, PLLX_IDDQ_MASK);
/* Set up PLLP_OUT(1|2|3|4) divisor to generate (9.6|48|102|204)MHz */
write32((CLK_DIVIDER(TEGRA_PLLP_KHZ, 9600) << PLL_OUT_RATIO_SHIFT |
PLL_OUT_OVR | PLL_OUT_CLKEN | PLL_OUT_RSTN) << PLL_OUT1_SHIFT |
(CLK_DIVIDER(TEGRA_PLLP_KHZ, 48000) << PLL_OUT_RATIO_SHIFT |
PLL_OUT_OVR | PLL_OUT_CLKEN | PLL_OUT_RSTN) << PLL_OUT2_SHIFT,
&clk_rst->pllp_outa);
write32((CLK_DIVIDER(TEGRA_PLLP_KHZ, 102000) << PLL_OUT_RATIO_SHIFT |
PLL_OUT_OVR | PLL_OUT_CLKEN | PLL_OUT_RSTN) << PLL_OUT3_SHIFT |
(CLK_DIVIDER(TEGRA_PLLP_KHZ, 204000) << PLL_OUT_RATIO_SHIFT |
PLL_OUT_OVR | PLL_OUT_CLKEN | PLL_OUT_RSTN) << PLL_OUT4_SHIFT,
&clk_rst->pllp_outb);
/* init pllx */
init_pll(&clk_rst->pllx_base, &clk_rst->pllx_misc,
osc_table[osc].pllx, PLLPAXS_MISC_LOCK_ENABLE);
/* init pllu */
init_pll(&clk_rst->pllu_base, &clk_rst->pllu_misc,
osc_table[osc].pllu, PLLUD_MISC_LOCK_ENABLE);
init_utmip_pll();
graphics_pll();
}
void clock_enable_clear_reset(u32 l, u32 h, u32 u, u32 v, u32 w, u32 x)
{
if (l) writel(l, &clk_rst->clk_enb_l_set);
if (h) writel(h, &clk_rst->clk_enb_h_set);
if (u) writel(u, &clk_rst->clk_enb_u_set);
if (v) writel(v, &clk_rst->clk_enb_v_set);
if (w) writel(w, &clk_rst->clk_enb_w_set);
if (x) writel(x, &clk_rst->clk_enb_x_set);
/* Give clocks time to stabilize. */
udelay(IO_STABILIZATION_DELAY);
if (l) writel(l, &clk_rst->rst_dev_l_clr);
if (h) writel(h, &clk_rst->rst_dev_h_clr);
if (u) writel(u, &clk_rst->rst_dev_u_clr);
if (v) writel(v, &clk_rst->rst_dev_v_clr);
if (w) writel(w, &clk_rst->rst_dev_w_clr);
if (x) writel(x, &clk_rst->rst_dev_x_clr);
}
void clock_reset_l(u32 bit)
{
writel(bit, &clk_rst->rst_dev_l_set);
udelay(1);
writel(bit, &clk_rst->rst_dev_l_clr);
}
void clock_reset_h(u32 bit)
{
writel(bit, &clk_rst->rst_dev_h_set);
udelay(1);
writel(bit, &clk_rst->rst_dev_h_clr);
}
void clock_reset_u(u32 bit)
{
writel(bit, &clk_rst->rst_dev_u_set);
udelay(1);
writel(bit, &clk_rst->rst_dev_u_clr);
}
void clock_reset_v(u32 bit)
{
writel(bit, &clk_rst->rst_dev_v_set);
udelay(1);
writel(bit, &clk_rst->rst_dev_v_clr);
}
void clock_reset_w(u32 bit)
{
writel(bit, &clk_rst->rst_dev_w_set);
udelay(1);
writel(bit, &clk_rst->rst_dev_w_clr);
}
void clock_reset_x(u32 bit)
{
writel(bit, &clk_rst->rst_dev_x_set);
udelay(1);
writel(bit, &clk_rst->rst_dev_x_clr);
}