/* SPDX-License-Identifier: GPL-2.0-only */ #include <delay.h> #include <halt.h> #include <soc/rtc.h> #include <soc/rtc_common.h> #include <soc/mt6358.h> #include <soc/pmic_wrap.h> #include <timer.h> /* initialize rtc setting of using dcxo clock */ static bool rtc_enable_dcxo(void) { u16 bbpu, con, osc32con, sec; rtc_read(RTC_BBPU, &bbpu); rtc_write(RTC_BBPU, bbpu | RTC_BBPU_KEY | RTC_BBPU_RELOAD); rtc_write_trigger(); mdelay(1); if (!rtc_writeif_unlock()) { rtc_info("rtc_writeif_unlock() failed\n"); return false; } rtc_read(RTC_OSC32CON, &osc32con); osc32con &= ~(RTC_EMBCK_SRC_SEL | RTC_EMBCK_SEL_MODE_MASK | RTC_GPS_CKOUT_EN); osc32con |= RTC_XOSC32_ENB | RTC_REG_XOSC32_ENB | RTC_EMB_K_EOSC32_MODE | RTC_EMBCK_SEL_OPTION; if (!rtc_xosc_write(osc32con)) { rtc_info("rtc_xosc_write() failed\n"); return false; } rtc_read(RTC_CON, &con); rtc_read(RTC_OSC32CON, &osc32con); rtc_read(RTC_AL_SEC, &sec); rtc_info("con=0x%x, osc32con=0x%x, sec=0x%x\n", con, osc32con, sec); return true; } /* initialize rtc related gpio */ bool rtc_gpio_init(void) { u16 con; /* RTC_32K1V8 clock change from 128k div 4 source * to RTC 32k source */ pwrap_write_field(PMIC_RG_TOP_CKSEL_CON0_SET, 0x1, 0x1, 3); /* Export 32K clock RTC_32K1V8_1 */ pwrap_write_field(PMIC_RG_TOP_CKPDN_CON1_CLR, 0x1, 0x1, 1); /* Export 32K clock RTC_32K2V8 */ rtc_read(RTC_CON, &con); con &= (RTC_CON_LPSTA_RAW | RTC_CON_LPRST | RTC_CON_EOSC32_LPEN | RTC_CON_XOSC32_LPEN); con |= (RTC_CON_GPEN | RTC_CON_GOE); con &= ~(RTC_CON_F32KOB); rtc_write(RTC_CON, con); return rtc_write_trigger(); } u16 rtc_get_frequency_meter(u16 val, u16 measure_src, u16 window_size) { u16 bbpu, osc32con; u16 fqmtr_busy, fqmtr_data, fqmtr_rst, fqmtr_tcksel; struct stopwatch sw; if (val) { rtc_read(RTC_BBPU, &bbpu); rtc_write(RTC_BBPU, bbpu | RTC_BBPU_KEY | RTC_BBPU_RELOAD); rtc_write_trigger(); rtc_read(RTC_OSC32CON, &osc32con); rtc_xosc_write((osc32con & ~RTC_XOSCCALI_MASK) | (val & RTC_XOSCCALI_MASK)); } /* enable FQMTR clock */ pwrap_write_field(PMIC_RG_TOP_CKPDN_CON0_CLR, 1, 1, PMIC_RG_FQMTR_32K_CK_PDN_SHIFT); pwrap_write_field(PMIC_RG_TOP_CKPDN_CON0_CLR, 1, 1, PMIC_RG_FQMTR_CK_PDN_SHIFT); /* FQMTR reset */ pwrap_write_field(PMIC_RG_FQMTR_RST, 1, 1, PMIC_FQMTR_RST_SHIFT); do { rtc_read(PMIC_RG_FQMTR_DATA, &fqmtr_data); rtc_read(PMIC_RG_FQMTR_CON0, &fqmtr_busy); } while (fqmtr_data && (fqmtr_busy & PMIC_FQMTR_CON0_BUSY)); rtc_read(PMIC_RG_FQMTR_RST, &fqmtr_rst); /* FQMTR normal */ pwrap_write_field(PMIC_RG_FQMTR_RST, 0, 1, PMIC_FQMTR_RST_SHIFT); /* set frequency meter window value (0=1X32K(fixed clock)) */ rtc_write(PMIC_RG_FQMTR_WINSET, window_size); /* enable 26M and set test clock source */ rtc_write(PMIC_RG_FQMTR_CON0, PMIC_FQMTR_CON0_DCXO26M_EN | measure_src); /* enable 26M -> delay 100us -> enable FQMTR */ udelay(100); rtc_read(PMIC_RG_FQMTR_CON0, &fqmtr_tcksel); /* enable FQMTR */ rtc_write(PMIC_RG_FQMTR_CON0, fqmtr_tcksel | PMIC_FQMTR_CON0_FQMTR_EN); udelay(100); stopwatch_init_usecs_expire(&sw, FQMTR_TIMEOUT_US); /* FQMTR read until ready */ do { rtc_read(PMIC_RG_FQMTR_CON0, &fqmtr_busy); if (stopwatch_expired(&sw)) { rtc_info("get frequency time out !!\n"); return false; } } while (fqmtr_busy & PMIC_FQMTR_CON0_BUSY); /* read data should be closed to 26M/32k = 794 */ rtc_read(PMIC_RG_FQMTR_DATA, &fqmtr_data); rtc_read(PMIC_RG_FQMTR_CON0, &fqmtr_tcksel); /* disable FQMTR */ rtc_write(PMIC_RG_FQMTR_CON0, fqmtr_tcksel & ~PMIC_FQMTR_CON0_FQMTR_EN); /* disable FQMTR -> delay 100us -> disable 26M */ udelay(100); /* disable 26M */ rtc_read(PMIC_RG_FQMTR_CON0, &fqmtr_tcksel); rtc_write(PMIC_RG_FQMTR_CON0, fqmtr_tcksel & ~PMIC_FQMTR_CON0_DCXO26M_EN); rtc_info("input=0x%x, output=%d\n", val, fqmtr_data); /* disable FQMTR clock */ pwrap_write_field(PMIC_RG_TOP_CKPDN_CON0_SET, 1, 1, PMIC_RG_FQMTR_32K_CK_PDN_SHIFT); pwrap_write_field(PMIC_RG_TOP_CKPDN_CON0_SET, 1, 1, PMIC_RG_FQMTR_CK_PDN_SHIFT); return fqmtr_data; } /* low power detect setting */ static bool rtc_lpd_init(void) { u16 con, sec; /* set RTC_LPD_OPT */ rtc_read(RTC_AL_SEC, &sec); sec |= RTC_LPD_OPT_F32K_CK_ALIVE; rtc_write(RTC_AL_SEC, sec); if (!rtc_write_trigger()) return false; /* init XOSC32 to detect 32k clock stop */ rtc_read(RTC_CON, &con); con |= RTC_CON_XOSC32_LPEN; if (!rtc_lpen(con)) return false; /* init EOSC32 to detect rtc low power */ rtc_read(RTC_CON, &con); con |= RTC_CON_EOSC32_LPEN; if (!rtc_lpen(con)) return false; rtc_read(RTC_CON, &con); con &= ~RTC_CON_XOSC32_LPEN; rtc_write(RTC_CON, con); /* set RTC_LPD_OPT */ rtc_read(RTC_AL_SEC, &sec); sec &= ~RTC_LPD_OPT_MASK; sec |= RTC_LPD_OPT_EOSC_LPD; rtc_write(RTC_AL_SEC, sec); if (!rtc_write_trigger()) return false; return true; } static bool rtc_hw_init(void) { u16 bbpu; rtc_read(RTC_BBPU, &bbpu); rtc_write(RTC_BBPU, bbpu | RTC_BBPU_KEY | RTC_BBPU_INIT); rtc_write_trigger(); udelay(500); rtc_read(RTC_BBPU, &bbpu); rtc_write(RTC_BBPU, bbpu | RTC_BBPU_KEY | RTC_BBPU_RELOAD); rtc_write_trigger(); rtc_read(RTC_BBPU, &bbpu); if (bbpu & RTC_BBPU_INIT) { rtc_info("timeout\n"); return false; } return true; } /* rtc init check */ int rtc_init(int recover) { int ret; rtc_info("recovery: %d\n", recover); /* write powerkeys to enable rtc functions */ if (!rtc_powerkey_init()) { ret = -RTC_STATUS_POWERKEY_INIT_FAIL; goto err; } /* write interface unlock need to be set after powerkey match */ if (!rtc_writeif_unlock()) { ret = -RTC_STATUS_WRITEIF_UNLOCK_FAIL; goto err; } rtc_osc_init(); /* In recovery mode, we need 20ms delay for register setting. */ if (recover) mdelay(20); if (!rtc_gpio_init()) { ret = -RTC_STATUS_GPIO_INIT_FAIL; goto err; } if (!rtc_hw_init()) { ret = -RTC_STATUS_HW_INIT_FAIL; goto err; } if (!rtc_reg_init()) { ret = -RTC_STATUS_REG_INIT_FAIL; goto err; } if (!rtc_lpd_init()) { ret = -RTC_STATUS_LPD_INIT_FAIL; goto err; } /* * After lpd init, powerkeys need to be written again to enable * low power detect function. */ if (!rtc_powerkey_init()) { ret = -RTC_STATUS_POWERKEY_INIT_FAIL; goto err; } return RTC_STATUS_OK; err: rtc_info("init fail: ret=%d\n", ret); return ret; } /* enable rtc bbpu */ void rtc_bbpu_power_on(void) { u16 bbpu; int ret; /* pull powerhold high, control by pmic */ pmic_set_power_hold(true); /* pull PWRBB high */ bbpu = RTC_BBPU_KEY | RTC_BBPU_AUTO | RTC_BBPU_RELOAD | RTC_BBPU_PWREN; rtc_write(RTC_BBPU, bbpu); ret = rtc_write_trigger(); rtc_info("rtc_write_trigger=%d\n", ret); rtc_read(RTC_BBPU, &bbpu); rtc_info("done BBPU=%#x\n", bbpu); } void poweroff(void) { u16 bbpu; if (!rtc_writeif_unlock()) rtc_info("rtc_writeif_unlock() failed\n"); /* pull PWRBB low */ bbpu = RTC_BBPU_KEY | RTC_BBPU_RELOAD | RTC_BBPU_PWREN; rtc_write(RTC_BBPU, bbpu); pmic_set_power_hold(false); halt(); } static void dcxo_init(void) { /* Buffer setting */ rtc_write(PMIC_RG_DCXO_CW15, 0xA2AA); rtc_write(PMIC_RG_DCXO_CW13, 0x98E9); rtc_write(PMIC_RG_DCXO_CW16, 0x9855); /* 26M enable control */ /* Enable clock buffer XO_SOC, XO_CEL */ rtc_write(PMIC_RG_DCXO_CW00, 0x4805); rtc_write(PMIC_RG_DCXO_CW11, 0x8000); /* Load thermal coefficient */ rtc_write(PMIC_RG_TOP_TMA_KEY, 0x9CA7); rtc_write(PMIC_RG_DCXO_CW21, 0x12A7); rtc_write(PMIC_RG_DCXO_ELR0, 0xD004); rtc_write(PMIC_RG_TOP_TMA_KEY, 0x0000); /* Adjust OSC FPM setting */ rtc_write(PMIC_RG_DCXO_CW07, 0x8FFE); /* Re-Calibrate OSC current */ rtc_write(PMIC_RG_DCXO_CW09, 0x008F); udelay(100); rtc_write(PMIC_RG_DCXO_CW09, 0x408F); mdelay(5); } void mt6358_dcxo_disable_unused(void) { /* Disable clock buffer XO_CEL */ rtc_write(PMIC_RG_DCXO_CW00_CLR, 0x0800); /* Mask bblpm request and switch off bblpm mode */ rtc_write(PMIC_RG_DCXO_CW23, 0x0052); } /* the rtc boot flow entry */ void rtc_boot(void) { /* dcxo clock init settings */ dcxo_init(); /* dcxo 32k init settings */ pwrap_write_field(PMIC_RG_DCXO_CW02, 0xF, 0xF, 0); pwrap_write_field(PMIC_RG_SCK_TOP_CON0, 0x1, 0x1, 0); /* use dcxo 32K clock */ if (!rtc_enable_dcxo()) rtc_info("rtc_enable_dcxo() failed\n"); rtc_boot_common(); rtc_bbpu_power_on(); }