/* * This file is part of the coreboot project. * * Copyright 2015 MediaTek Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #define I2C_CLK_HZ (AXI_HZ / 16) static struct mtk_i2c i2c[7] = { /* i2c0 setting */ { .i2c_regs = (void *)I2C_BASE, .i2c_dma_regs = (void *)(I2C_DMA_BASE + 0x80), }, /* i2c1 setting */ { .i2c_regs = (void *)(I2C_BASE + 0x1000), .i2c_dma_regs = (void *)(I2C_DMA_BASE + 0x100), }, /* i2c2 setting */ { .i2c_regs = (void *)(I2C_BASE + 0x2000), .i2c_dma_regs = (void *)(I2C_DMA_BASE + 0x180), }, /* i2c3 setting */ { .i2c_regs = (void *)(I2C_BASE + 0x9000), .i2c_dma_regs = (void *)(I2C_DMA_BASE + 0x200), }, /* i2c4 setting */ { .i2c_regs = (void *)(I2C_BASE + 0xa000), .i2c_dma_regs = (void *)(I2C_DMA_BASE + 0x280), }, /* i2c5 is reserved for internal use. */ { }, /* i2c6 setting */ { .i2c_regs = (void *)(I2C_BASE + 0xc000), .i2c_dma_regs = (void *)I2C_DMA_BASE, } }; #define I2CTAG "[I2C][PL] " #if IS_ENABLED(CONFIG_DEBUG_I2C) #define I2CLOG(fmt, arg...) printk(BIOS_INFO, I2CTAG fmt, ##arg) #else #define I2CLOG(fmt, arg...) #endif /* CONFIG_DEBUG_I2C */ #define I2CERR(fmt, arg...) printk(BIOS_ERR, I2CTAG fmt, ##arg) static inline void i2c_dma_reset(struct mt8173_i2c_dma_regs *dma_regs) { write32(&dma_regs->dma_rst, 0x1); udelay(50); write32(&dma_regs->dma_rst, 0x2); udelay(50); write32(&dma_regs->dma_rst, 0x0); udelay(50); } void mtk_i2c_bus_init(uint8_t bus) { uint8_t sample_div; uint8_t step_div; uint32_t i2c_freq; assert(bus < ARRAY_SIZE(i2c)); /* Calculate i2c frequency */ sample_div = 1; step_div = div_round_up(I2C_CLK_HZ, (400 * KHz * sample_div * 2)); i2c_freq = I2C_CLK_HZ / (step_div * sample_div * 2); assert(sample_div < 8 && step_div < 64 && i2c_freq < 400 * KHz && i2c_freq >= 380 * KHz); /* Init i2c bus Timing register */ write32(&i2c[bus].i2c_regs->timing, (sample_div - 1) << 8 | (step_div - 1)); } static inline void mtk_i2c_dump_info(uint8_t bus) { struct mt8173_i2c_regs *regs; regs = i2c[bus].i2c_regs; I2CLOG("I2C register:\nSLAVE_ADDR %x\nINTR_MASK %x\nINTR_STAT %x\n" "CONTROL %x\nTRANSFER_LEN %x\nTRANSAC_LEN %x\nDELAY_LEN %x\n" "TIMING %x\nSTART %x\nFIFO_STAT %x\nIO_CONFIG %x\nHS %x\n" "DEBUGSTAT %x\nEXT_CONF %x\n", (read32(®s->salve_addr)), (read32(®s->intr_mask)), (read32(®s->intr_stat)), (read32(®s->control)), (read32(®s->transfer_len)), (read32(®s->transac_len)), (read32(®s->delay_len)), (read32(®s->timing)), (read32(®s->start)), (read32(®s->fifo_stat)), (read32(®s->io_config)), (read32(®s->hs)), (read32(®s->debug_stat)), (read32(®s->ext_conf))); I2CLOG("addr address %x\n", (uint32_t)regs); } static uint32_t mtk_i2c_transfer(uint8_t bus, struct i2c_msg *seg, enum i2c_modes read) { uint32_t ret_code = I2C_OK; uint16_t status; uint32_t time_out_val = 0; uint8_t addr; uint32_t write_len = 0; uint32_t read_len = 0; uint8_t *write_buffer = NULL; uint8_t *read_buffer = NULL; struct mt8173_i2c_regs *regs; struct mt8173_i2c_dma_regs *dma_regs; struct stopwatch sw; regs = i2c[bus].i2c_regs; dma_regs = i2c[bus].i2c_dma_regs; addr = seg[0].slave; switch (read) { case I2C_WRITE_MODE: assert(seg[0].len > 0 && seg[0].len <= 255); write_len = seg[0].len; write_buffer = seg[0].buf; break; case I2C_READ_MODE: assert(seg[0].len > 0 && seg[0].len <= 255); read_len = seg[0].len; read_buffer = seg[0].buf; break; /* Must use special write-then-read mode for repeated starts. */ case I2C_WRITE_READ_MODE: assert(seg[0].len > 0 && seg[0].len <= 255); assert(seg[1].len > 0 && seg[1].len <= 255); write_len = seg[0].len; read_len = seg[1].len; write_buffer = seg[0].buf; read_buffer = seg[1].buf; break; } /* Clear interrupt status */ write32(®s->intr_stat, I2C_TRANSAC_COMP | I2C_ACKERR | I2C_HS_NACKERR); write32(®s->fifo_addr_clr, 0x1); /* Enable interrupt */ write32(®s->intr_mask, I2C_HS_NACKERR | I2C_ACKERR | I2C_TRANSAC_COMP); switch (read) { case I2C_WRITE_MODE: memcpy(_dma_coherent, write_buffer, write_len); /* control registers */ write32(®s->control, ACK_ERR_DET_EN | DMA_EN | CLK_EXT | REPEATED_START_FLAG); /* Set transfer and transaction len */ write32(®s->transac_len, 1); write32(®s->transfer_len, write_len); /* set i2c write slave address*/ write32(®s->slave_addr, addr << 1); /* Prepare buffer data to start transfer */ write32(&dma_regs->dma_con, I2C_DMA_CON_TX); write32(&dma_regs->dma_tx_mem_addr, (uintptr_t)_dma_coherent); write32(&dma_regs->dma_tx_len, write_len); break; case I2C_READ_MODE: /* control registers */ write32(®s->control, ACK_ERR_DET_EN | DMA_EN | CLK_EXT | REPEATED_START_FLAG); /* Set transfer and transaction len */ write32(®s->transac_len, 1); write32(®s->transfer_len, read_len); /* set i2c read slave address*/ write32(®s->slave_addr, (addr << 1 | 0x1)); /* Prepare buffer data to start transfer */ write32(&dma_regs->dma_con, I2C_DMA_CON_RX); write32(&dma_regs->dma_rx_mem_addr, (uintptr_t)_dma_coherent); write32(&dma_regs->dma_rx_len, read_len); break; case I2C_WRITE_READ_MODE: memcpy(_dma_coherent, write_buffer, write_len); /* control registers */ write32(®s->control, DIR_CHG | ACK_ERR_DET_EN | DMA_EN | CLK_EXT | REPEATED_START_FLAG); /* Set transfer and transaction len */ write32(®s->transfer_len, write_len); write32(®s->transfer_aux_len, read_len); write32(®s->transac_len, 2); /* set i2c write slave address*/ write32(®s->slave_addr, addr << 1); /* Prepare buffer data to start transfer */ write32(&dma_regs->dma_con, I2C_DMA_CLR_FLAG); write32(&dma_regs->dma_tx_mem_addr, (uintptr_t)_dma_coherent); write32(&dma_regs->dma_tx_len, write_len); write32(&dma_regs->dma_rx_mem_addr, (uintptr_t)_dma_coherent); write32(&dma_regs->dma_rx_len, read_len); break; } write32(&dma_regs->dma_int_flag, I2C_DMA_CLR_FLAG); write32(&dma_regs->dma_en, I2C_DMA_START_EN); /* start transfer transaction */ write32(®s->start, 0x1); stopwatch_init_msecs_expire(&sw, 100); /* polling mode : see if transaction complete */ while (1) { status = read32(®s->intr_stat); if (status & I2C_HS_NACKERR) { ret_code = I2C_TRANSFER_FAIL_HS_NACKERR; I2CERR("[i2c%d transfer] transaction NACK error\n", bus); mtk_i2c_dump_info(bus); break; } else if (status & I2C_ACKERR) { ret_code = I2C_TRANSFER_FAIL_ACKERR; I2CERR("[i2c%d transfer] transaction ACK error\n", bus); mtk_i2c_dump_info(bus); break; } else if (status & I2C_TRANSAC_COMP) { ret_code = I2C_OK; memcpy(read_buffer, _dma_coherent, read_len); break; } if (stopwatch_expired(&sw)) { ret_code = I2C_TRANSFER_FAIL_TIMEOUT; I2CERR("[i2c%d transfer] transaction timeout:%d\n", bus, time_out_val); mtk_i2c_dump_info(bus); break; } } write32(®s->intr_stat, I2C_TRANSAC_COMP | I2C_ACKERR | I2C_HS_NACKERR); /* clear bit mask */ write32(®s->intr_mask, I2C_HS_NACKERR | I2C_ACKERR | I2C_TRANSAC_COMP); /* reset the i2c controller for next i2c transfer. */ write32(®s->softreset, 0x1); i2c_dma_reset(dma_regs); return ret_code; } static uint8_t mtk_i2c_should_combine(struct i2c_msg *seg, int left_count) { if (left_count >= 2 && !(seg[0].flags & I2C_M_RD) && (seg[1].flags & I2C_M_RD) && seg[0].slave == seg[1].slave) return 1; else return 0; } int platform_i2c_transfer(unsigned bus, struct i2c_msg *segments, int seg_count) { int ret = 0; int i; int read; for (i = 0; i < seg_count; i++) { if (mtk_i2c_should_combine(&segments[i], seg_count - i)) { read = I2C_WRITE_READ_MODE; } else { read = (segments[i].flags & I2C_M_RD) ? I2C_READ_MODE : I2C_WRITE_MODE; } ret = mtk_i2c_transfer(bus, &segments[i], read); if (ret) break; if (read == I2C_WRITE_READ_MODE) i++; } return ret; }