/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include static struct pmif *pmif_arb = NULL; void rtc_read(u16 addr, u16 *rdata) { u32 data; if (pmif_arb == NULL) pmif_arb = get_pmif_controller(PMIF_SPI, 0); pmif_arb->read(pmif_arb, 0, (u32)addr, &data); *rdata = (u16)data; } void rtc_write(u16 addr, u16 wdata) { if (pmif_arb == NULL) pmif_arb = get_pmif_controller(PMIF_SPI, 0); pmif_arb->write(pmif_arb, 0, (unsigned int)addr, (unsigned int)wdata); } static void rtc_write_field(u16 reg, u16 val, u16 mask, u16 shift) { u16 old, new; rtc_read(reg, &old); new = old & ~(mask << shift); new |= (val << shift); rtc_write(reg, new); } /* initialize rtc setting of using dcxo clock */ static bool rtc_enable_dcxo(void) { if (!rtc_writeif_unlock()) { rtc_info("rtc_writeif_unlock() failed\n"); return false; } u16 bbpu, con, osc32con, sec; rtc_read(RTC_BBPU, &bbpu); rtc_write(RTC_BBPU, bbpu | RTC_BBPU_KEY | RTC_BBPU_RELOAD); rtc_write_trigger(); rtc_read(RTC_OSC32CON, &osc32con); osc32con &= ~(RTC_EMBCK_SRC_SEL | RTC_EMBCK_SEL_MODE_MASK); osc32con |= (OSC32CON_ANALOG_SETTING | RTC_REG_XOSC32_ENB); if (!rtc_xosc_write(osc32con)) { rtc_info("rtc_xosc_write() failed\n"); return false; } rtc_read(RTC_CON, &con); rtc_read(RTC_OSC32CON, &osc32con); rtc_read(RTC_AL_SEC, &sec); rtc_info("con=%#x, osc32con=%#x, sec=%#x\n", con, osc32con, sec); return true; } /* initialize rtc related gpio */ bool rtc_gpio_init(void) { u16 con; /* GPI mode and pull down */ rtc_read(RTC_CON, &con); con &= (RTC_CON_LPSTA_RAW | RTC_CON_LPRST | RTC_CON_EOSC32_LPEN | RTC_CON_XOSC32_LPEN); con |= (RTC_CON_GPEN | RTC_CON_GOE); con &= ~(RTC_CON_F32KOB); con &= ~RTC_CON_GPU; rtc_write(RTC_CON, con); return rtc_write_trigger(); } u16 rtc_get_frequency_meter(u16 val, u16 measure_src, u16 window_size) { u16 bbpu, osc32con; u16 fqmtr_busy, fqmtr_data, fqmtr_tcksel; struct stopwatch sw; if (val) { rtc_read(RTC_BBPU, &bbpu); rtc_write(RTC_BBPU, bbpu | RTC_BBPU_KEY | RTC_BBPU_RELOAD); rtc_write_trigger(); rtc_read(RTC_OSC32CON, &osc32con); rtc_xosc_write((osc32con & ~RTC_XOSCCALI_MASK) | (val & RTC_XOSCCALI_MASK)); } /* RG_BANK_FQMTR_RST=1, reset FQMTR*/ rtc_write_field(PMIC_RG_BANK_FQMTR_RST, 1, 1, PMIC_RG_BANK_FQMTR_RST_SHIFT); udelay(20); /* RG_BANK_FQMTR_RST=0, release FQMTR*/ rtc_write_field(PMIC_RG_BANK_FQMTR_RST, 0, 1, PMIC_RG_BANK_FQMTR_RST_SHIFT); /* enable FQMTR clock */ rtc_write_field(PMIC_RG_TOP_CKPDN_CON0_CLR, 1, 1, PMIC_RG_FQMTR_CK_PDN_SHIFT); rtc_write_field(PMIC_RG_TOP_CKPDN_CON0_CLR, 1, 1, PMIC_RG_FQMTR_32K_CK_PDN_SHIFT); rtc_write_field(PMIC_RG_FQMTR_CON0, 1, 1, PMIC_RG_FQMTR_DCXO26M_EN_SHIFT); /* set frequency meter window value (0=1X32K(fixed clock)) */ rtc_write(PMIC_RG_FQMTR_WINSET, window_size); /* enable 26M and set test clock source */ rtc_write(PMIC_RG_FQMTR_CON0, PMIC_FQMTR_CON0_DCXO26M_EN | measure_src); /* enable 26M -> delay 100us -> enable FQMTR */ mdelay(1); rtc_read(PMIC_RG_FQMTR_CON0, &fqmtr_tcksel); /* enable FQMTR */ rtc_write(PMIC_RG_FQMTR_CON0, fqmtr_tcksel | PMIC_FQMTR_CON0_FQMTR_EN); mdelay(1); stopwatch_init_usecs_expire(&sw, FQMTR_TIMEOUT_US); /* FQMTR read until ready */ do { rtc_read(PMIC_RG_FQMTR_CON0, &fqmtr_busy); if (stopwatch_expired(&sw)) { rtc_info("get frequency time out!\n"); return false; } } while (fqmtr_busy & PMIC_FQMTR_CON0_BUSY); /* read data should be closed to 26M/32k = 794 */ rtc_read(PMIC_RG_FQMTR_DATA, &fqmtr_data); /* disable FQMTR */ rtc_read(PMIC_RG_FQMTR_CON0, &fqmtr_tcksel); rtc_write(PMIC_RG_FQMTR_CON0, fqmtr_tcksel & ~PMIC_FQMTR_CON0_FQMTR_EN); /* disable FQMTR -> delay 100us -> disable 26M */ mdelay(1); /* disable 26M */ rtc_read(PMIC_RG_FQMTR_CON0, &fqmtr_tcksel); rtc_write(PMIC_RG_FQMTR_CON0, fqmtr_tcksel & ~PMIC_FQMTR_CON0_DCXO26M_EN); rtc_info("input=%d, output=%d\n", val, fqmtr_data); /* disable FQMTR clock */ rtc_write_field(PMIC_RG_TOP_CKPDN_CON0_SET, 1, 1, PMIC_RG_FQMTR_CK_PDN_SHIFT); rtc_write_field(PMIC_RG_TOP_CKPDN_CON0_SET, 1, 1, PMIC_RG_FQMTR_32K_CK_PDN_SHIFT); return fqmtr_data; } /* low power detect setting */ static bool rtc_lpd_init(void) { u16 con, sec; /* enable both XOSC & EOSC LPD */ rtc_read(RTC_AL_SEC, &sec); sec &= ~RTC_LPD_OPT_F32K_CK_ALIVE; rtc_write(RTC_AL_SEC, sec); if (!rtc_write_trigger()) return false; /* init XOSC32 to detect 32k clock stop */ rtc_read(RTC_CON, &con); con |= RTC_CON_XOSC32_LPEN; if (!rtc_lpen(con)) return false; /* init EOSC32 to detect rtc low power */ rtc_read(RTC_CON, &con); con |= RTC_CON_EOSC32_LPEN; if (!rtc_lpen(con)) return false; rtc_read(RTC_CON, &con); rtc_info("check RTC_CON_LPSTA_RAW after LP init: %#x\n", con); return true; } static bool rtc_hw_init(void) { u16 bbpu; rtc_read(RTC_BBPU, &bbpu); bbpu |= RTC_BBPU_KEY | RTC_BBPU_RESET_ALARM | RTC_BBPU_RESET_SPAR; rtc_write(RTC_BBPU, bbpu & (~RTC_BBPU_SPAR_SW)); rtc_write_trigger(); udelay(500); rtc_read(RTC_BBPU, &bbpu); rtc_write(RTC_BBPU, bbpu | RTC_BBPU_KEY | RTC_BBPU_RELOAD); rtc_write_trigger(); rtc_read(RTC_BBPU, &bbpu); if (bbpu & RTC_BBPU_RESET_ALARM || bbpu & RTC_BBPU_RESET_SPAR) { rtc_info("timeout\n"); return false; } return true; } /* rtc init check */ int rtc_init(int recover) { int ret; u16 year; rtc_info("recovery: %d\n", recover); /* write powerkeys to enable rtc functions */ if (!rtc_powerkey_init()) { ret = -RTC_STATUS_POWERKEY_INIT_FAIL; goto err; } /* write interface unlock need to be set after powerkey match */ if (!rtc_writeif_unlock()) { ret = -RTC_STATUS_WRITEIF_UNLOCK_FAIL; goto err; } rtc_osc_init(); /* In recovery mode, we need 20ms delay for register setting. */ if (recover) mdelay(20); if (!rtc_gpio_init()) { ret = -RTC_STATUS_GPIO_INIT_FAIL; goto err; } if (!rtc_hw_init()) { ret = -RTC_STATUS_HW_INIT_FAIL; goto err; } if (!rtc_reg_init()) { ret = -RTC_STATUS_REG_INIT_FAIL; goto err; } /* solution1 for EOSC cali*/ rtc_read(RTC_AL_YEA, &year); rtc_write(RTC_AL_YEA, (year | RTC_K_EOSC_RSV_0) & (~RTC_K_EOSC_RSV_1) & (~RTC_K_EOSC_RSV_2)); rtc_write_trigger(); if (!rtc_lpd_init()) { ret = -RTC_STATUS_LPD_INIT_FAIL; goto err; } /* * After lpd init, powerkeys need to be written again to enable * low power detect function. */ if (!rtc_powerkey_init()) { ret = -RTC_STATUS_POWERKEY_INIT_FAIL; goto err; } return RTC_STATUS_OK; err: rtc_info("init failed: ret=%d\n", ret); return ret; } /* enable rtc bbpu */ void rtc_bbpu_power_on(void) { u16 bbpu; int ret; /* pull powerhold high, control by pmic */ rtc_write_field(PMIC_PWRHOLD, 1, 0x1, 0); bbpu = RTC_BBPU_KEY | RTC_BBPU_ENABLE_ALARM; rtc_write(RTC_BBPU, bbpu); ret = rtc_write_trigger(); rtc_info("rtc_write_trigger=%d\n", ret); rtc_read(RTC_BBPU, &bbpu); rtc_info("done BBPU=%#x\n", bbpu); } void poweroff(void) { u16 bbpu; if (!rtc_writeif_unlock()) rtc_info("rtc_writeif_unlock() failed\n"); /* pull PWRBB low */ bbpu = RTC_BBPU_KEY | RTC_BBPU_ENABLE_ALARM; rtc_write(RTC_BBPU, bbpu); rtc_write_field(PMIC_PWRHOLD, 0, 0x1, 0); halt(); } /* the rtc boot flow entry */ void rtc_boot(void) { u16 tmp; /* dcxo 32k init settings */ rtc_write_field(PMIC_RG_DCXO_CW02, 0xF, 0xF, 0); rtc_read(PMIC_RG_SCK_TOP_CON0, &tmp); rtc_info("PMIC_RG_SCK_TOP_CON0,%#x:%#x\n", PMIC_RG_SCK_TOP_CON0, tmp); rtc_write_field(PMIC_RG_SCK_TOP_CON0, 0x1, 0x1, 0); rtc_read(PMIC_RG_SCK_TOP_CON0, &tmp); rtc_info("PMIC_RG_SCK_TOP_CON0,%#x:%#x\n", PMIC_RG_SCK_TOP_CON0, tmp); /* use dcxo 32K clock */ if (!rtc_enable_dcxo()) rtc_info("rtc_enable_dcxo() failed\n"); rtc_boot_common(); rtc_bbpu_power_on(); }