/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include #include #include #include _Static_assert(sizeof(struct dramc_param) <= FMAP_SECTION_RW_MRC_CACHE_SIZE, "sizeof(struct dramc_param) exceeds RW_MRC_CACHE size"); const char *get_dram_geometry_str(u32 ddr_geometry); const char *get_dram_type_str(u32 ddr_type); static const struct ddr_base_info *curr_ddr_info; static int mt_mem_test(const struct dramc_data *dparam) { if (CONFIG(MEMORY_TEST)) { u8 *addr = _dram; const struct ddr_base_info *ddr_info = &dparam->ddr_info; for (u8 rank = RANK_0; rank < ddr_info->support_ranks; rank++) { int result = complex_mem_test(addr, 0x2000); if (result != 0) { printk(BIOS_ERR, "[MEM] complex R/W mem test failed: %d\n", result); return -1; } printk(BIOS_DEBUG, "[MEM] rank %u complex R/W mem test passed\n", rank); addr += ddr_info->rank_size[rank]; } } return 0; } const char *get_dram_geometry_str(u32 ddr_geometry) { const char *s; switch (ddr_geometry) { case DDR_TYPE_2CH_2RK_4GB_2_2: s = "2CH_2RK_4GB_2_2"; break; case DDR_TYPE_2CH_2RK_6GB_3_3: s = "2CH_2RK_6GB_3_3"; break; case DDR_TYPE_2CH_2RK_8GB_4_4: s = "2CH_2RK_8GB_4_4"; break; case DDR_TYPE_2CH_2RK_8GB_4_4_BYTE: s = "2CH_2RK_8GB_4_4_BYTE"; break; case DDR_TYPE_2CH_1RK_4GB_4_0: s = "2CH_1RK_4GB_4_0"; break; case DDR_TYPE_2CH_2RK_6GB_2_4: s = "2CH_2RK_6GB_2_4"; break; default: s = ""; break; } return s; } const char *get_dram_type_str(u32 ddr_type) { const char *s; switch (ddr_type) { case DDR_TYPE_DISCRETE: s = "DSC"; break; case DDR_TYPE_EMCP: s = "EMCP"; break; default: s = ""; break; } return s; } size_t mtk_dram_size(void) { size_t size = 0; if (!curr_ddr_info) return 0; for (unsigned int i = 0; i < RANK_MAX; ++i) size += curr_ddr_info->mrr_info.mr8_density[i]; return size; } __weak enum mem_chip_type map_to_lpddr_dram_type(uint16_t lpddr_type) { return MEM_CHIP_LPDDR4X; } static void fill_dram_info(struct mem_chip_info *mc, const struct ddr_base_info *ddr) { unsigned int c, r; mc->num_entries = CHANNEL_MAX * ddr->mrr_info.rank_nums; mc->struct_version = MEM_CHIP_STRUCT_VERSION; struct mem_chip_entry *entry = mc->entries; for (c = 0; c < CHANNEL_MAX; c++) { for (r = 0; r < ddr->mrr_info.rank_nums; r++) { entry->channel = c; entry->rank = r; entry->type = map_to_lpddr_dram_type(ddr->lpddr_type); entry->channel_io_width = DQ_DATA_WIDTH_LP4; entry->density_mbits = ddr->mrr_info.mr8_density[r] / CHANNEL_MAX / (MiB / 8); entry->io_width = DQ_DATA_WIDTH_LP4; entry->manufacturer_id = ddr->mrr_info.mr5_vendor_id; entry->revision_id[0] = ddr->mrr_info.mr6_revision_id; entry->revision_id[1] = ddr->mrr_info.mr7_revision_id; entry++; } } } static void add_mem_chip_info(int unused) { struct mem_chip_info *mc; size_t size; if (!CONFIG(USE_CBMEM_DRAM_INFO)) { printk(BIOS_DEBUG, "DRAM-K: CBMEM DRAM info is unsupported (USE_CBMEM_DRAM_INFO)\n"); return; } size = mem_chip_info_size(CHANNEL_MAX * curr_ddr_info->mrr_info.rank_nums); mc = cbmem_add(CBMEM_ID_MEM_CHIP_INFO, size); assert(mc); memset(mc, 0, size); fill_dram_info(mc, curr_ddr_info); } CBMEM_CREATION_HOOK(add_mem_chip_info); static int run_dram_blob(struct dramc_param *dparam) { /* Load and run the provided blob for full-calibration if available */ struct prog dram = PROG_INIT(PROG_REFCODE, CONFIG_CBFS_PREFIX "/dram"); dump_param_header(dparam); if (cbfs_prog_stage_load(&dram)) { printk(BIOS_ERR, "DRAM-K: CBFS load program failed\n"); return -2; } dparam->do_putc = do_putchar; prog_set_entry(&dram, prog_entry(&dram), dparam); prog_run(&dram); if (dparam->header.status != DRAMC_SUCCESS) { printk(BIOS_ERR, "DRAM-K: calibration failed: status = %d\n", dparam->header.status); return -3; } if (!(dparam->header.config & DRAMC_CONFIG_FAST_K) && !(dparam->header.flags & DRAMC_FLAG_HAS_SAVED_DATA)) { printk(BIOS_ERR, "DRAM-K: Full calibration executed without saving parameters. " "Please ensure the blob is built properly.\n"); return -4; } return 0; } static int dram_run_fast_calibration(struct dramc_param *dparam) { const u16 config = CONFIG(MEDIATEK_DRAM_DVFS) ? DRAMC_ENABLE_DVFS : DRAMC_DISABLE_DVFS; if (dparam->dramc_datas.ddr_info.config_dvfs != config) { printk(BIOS_WARNING, "DRAM-K: Incompatible config for calibration data from flash " "(expected: %#x, saved: %#x)\n", config, dparam->dramc_datas.ddr_info.config_dvfs); return -1; } printk(BIOS_INFO, "DRAM-K: DRAM calibration data valid pass\n"); if (CONFIG(MEDIATEK_DRAM_SCRAMBLE)) dparam->header.config |= DRAMC_CONFIG_SCRAMBLE; if (CONFIG(MEDIATEK_DRAM_BLOB_FAST_INIT)) { printk(BIOS_INFO, "DRAM-K: Run fast calibration run in blob mode\n"); /* * The loaded config should not contain FAST_K (done in full calibration), * so we have to set that now to indicate the blob taking the config instead * of generating a new config. */ dparam->header.config |= DRAMC_CONFIG_FAST_K; if (run_dram_blob(dparam) < 0) return -3; } else { init_dram_by_params(dparam); } if (mt_mem_test(&dparam->dramc_datas) < 0) return -4; return 0; } static int dram_run_full_calibration(struct dramc_param *dparam) { initialize_dramc_param(dparam); return run_dram_blob(dparam); } static void mem_init_set_default_config(struct dramc_param *dparam, const struct sdram_info *dram_info) { u32 type, geometry; memset(dparam, 0, sizeof(*dparam)); type = dram_info->ddr_type; geometry = dram_info->ddr_geometry; dparam->dramc_datas.ddr_info.sdram.ddr_type = type; if (CONFIG(MEDIATEK_DRAM_DVFS)) dparam->dramc_datas.ddr_info.config_dvfs = DRAMC_ENABLE_DVFS; if (CONFIG(MEDIATEK_DRAM_SCRAMBLE)) dparam->header.config |= DRAMC_CONFIG_SCRAMBLE; dparam->dramc_datas.ddr_info.sdram.ddr_geometry = geometry; printk(BIOS_INFO, "DRAM-K: ddr_type: %s, config_dvfs: %d, ddr_geometry: %s\n", get_dram_type_str(type), dparam->dramc_datas.ddr_info.config_dvfs, get_dram_geometry_str(geometry)); } static void mt_mem_init_run(struct dramc_param *dparam, const struct sdram_info *dram_info) { const ssize_t mrc_cache_size = sizeof(*dparam); ssize_t data_size; struct stopwatch sw; int ret; /* Load calibration params from flash and run fast calibration */ data_size = mrc_cache_load_current(MRC_TRAINING_DATA, DRAMC_PARAM_HEADER_VERSION, dparam, mrc_cache_size); if (data_size == mrc_cache_size) { printk(BIOS_INFO, "DRAM-K: Running fast calibration\n"); stopwatch_init(&sw); ret = dram_run_fast_calibration(dparam); if (ret != 0) { printk(BIOS_ERR, "DRAM-K: Failed to run fast calibration " "in %lld msecs, error: %d\n", stopwatch_duration_msecs(&sw), ret); /* Erase flash data after fast calibration failed */ memset(dparam, 0xa5, mrc_cache_size); mrc_cache_stash_data(MRC_TRAINING_DATA, DRAMC_PARAM_HEADER_VERSION, dparam, mrc_cache_size); } else { printk(BIOS_INFO, "DRAM-K: Fast calibration passed in %lld msecs\n", stopwatch_duration_msecs(&sw)); return; } } else { printk(BIOS_WARNING, "DRAM-K: Invalid data in flash (size: %#zx, expected: %#zx)\n", data_size, mrc_cache_size); } /* Run full calibration */ printk(BIOS_INFO, "DRAM-K: Running full calibration\n"); mem_init_set_default_config(dparam, dram_info); stopwatch_init(&sw); int err = dram_run_full_calibration(dparam); if (err == 0) { printk(BIOS_INFO, "DRAM-K: Full calibration passed in %lld msecs\n", stopwatch_duration_msecs(&sw)); mrc_cache_stash_data(MRC_TRAINING_DATA, DRAMC_PARAM_HEADER_VERSION, dparam, mrc_cache_size); } else { printk(BIOS_ERR, "DRAM-K: Full calibration failed in %lld msecs\n", stopwatch_duration_msecs(&sw)); } } void mt_mem_init(struct dramc_param *dparam) { const struct sdram_info *sdram_param = NULL; static struct sdram_info fake_sdram_param; if (CONFIG(MEDIATEK_DRAM_ADAPTIVE)) sdram_param = &fake_sdram_param; else sdram_param = get_sdram_config(); mt_mem_init_run(dparam, sdram_param); } void mtk_dram_init(void) { /* dramc_param is too large to fit in stack. */ static struct dramc_param dramc_parameter; mt_mem_init(&dramc_parameter); curr_ddr_info = &dramc_parameter.dramc_datas.ddr_info; mtk_mmu_after_dram(); }