/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include #include #include uint8_t get_stack_busno(const uint8_t stack) { if (stack >= MAX_IIO_STACK) { printk(BIOS_ERR, "%s: Stack %u does not exist!\n", __func__, stack); return 0; } const pci_devfn_t dev = PCI_DEV(UBOX_DECS_BUS, UBOX_DECS_DEV, UBOX_DECS_FUNC); const uint16_t offset = stack / 4 ? UBOX_DECS_CPUBUSNO1_CSR : UBOX_DECS_CPUBUSNO_CSR; return pci_io_read_config32(dev, offset) >> (8 * (stack % 4)) & 0xff; } void unlock_pam_regions(void) { uint32_t bus1 = 0; uint32_t pam0123_unlock_dram = 0x33333330; uint32_t pam456_unlock_dram = 0x00333333; get_cpubusnos(NULL, &bus1, NULL, NULL); pci_io_write_config32(PCI_DEV(bus1, SAD_ALL_DEV, SAD_ALL_FUNC), SAD_ALL_PAM0123_CSR, pam0123_unlock_dram); pci_io_write_config32(PCI_DEV(bus1, SAD_ALL_DEV, SAD_ALL_FUNC), SAD_ALL_PAM456_CSR, pam456_unlock_dram); uint32_t reg1 = pci_io_read_config32(PCI_DEV(bus1, SAD_ALL_DEV, SAD_ALL_FUNC), SAD_ALL_PAM0123_CSR); uint32_t reg2 = pci_io_read_config32(PCI_DEV(bus1, SAD_ALL_DEV, SAD_ALL_FUNC), SAD_ALL_PAM456_CSR); printk(BIOS_DEBUG, "%s:%s pam0123_csr: 0x%x, pam456_csr: 0x%x\n", __FILE__, __func__, reg1, reg2); } void get_cpubusnos(uint32_t *bus0, uint32_t *bus1, uint32_t *bus2, uint32_t *bus3) { uint32_t bus = pci_io_read_config32(PCI_DEV(UBOX_DECS_BUS, UBOX_DECS_DEV, UBOX_DECS_FUNC), UBOX_DECS_CPUBUSNO_CSR); if (bus0) *bus0 = (bus & 0xff); if (bus1) *bus1 = (bus >> 8) & 0xff; if (bus2) *bus2 = (bus >> 16) & 0xff; if (bus3) *bus3 = (bus >> 24) & 0xff; } msr_t read_msr_ppin(void) { msr_t ppin = {0}; msr_t msr; /* If MSR_PLATFORM_INFO PPIN_CAP is 0, PPIN capability is not supported */ msr = rdmsr(MSR_PLATFORM_INFO); if ((msr.lo & MSR_PPIN_CAP) == 0) { printk(BIOS_ERR, "MSR_PPIN_CAP is 0, PPIN is not supported\n"); return ppin; } /* Access to MSR_PPIN is permitted only if MSR_PPIN_CTL LOCK is 0 and ENABLE is 1 */ msr = rdmsr(MSR_PPIN_CTL); if (msr.lo & MSR_PPIN_CTL_LOCK) { printk(BIOS_ERR, "MSR_PPIN_CTL_LOCK is 1, PPIN access is not allowed\n"); return ppin; } if ((msr.lo & MSR_PPIN_CTL_ENABLE) == 0) { /* Set MSR_PPIN_CTL ENABLE to 1 */ msr.lo |= MSR_PPIN_CTL_ENABLE; wrmsr(MSR_PPIN_CTL, msr); } ppin = rdmsr(MSR_PPIN); /* Set enable to 0 after reading MSR_PPIN */ msr.lo &= ~MSR_PPIN_CTL_ENABLE; wrmsr(MSR_PPIN_CTL, msr); return ppin; } int get_threads_per_package(void) { unsigned int core_count, thread_count; cpu_read_topology(&core_count, &thread_count); return thread_count; } int get_platform_thread_count(void) { return soc_get_num_cpus() * get_threads_per_package(); } const IIO_UDS *get_iio_uds(void) { size_t hob_size; static const IIO_UDS *hob; const uint8_t fsp_hob_iio_universal_data_guid[16] = FSP_HOB_IIO_UNIVERSAL_DATA_GUID; if (hob != NULL) return hob; hob = fsp_find_extension_hob_by_guid(fsp_hob_iio_universal_data_guid, &hob_size); assert(hob != NULL && hob_size != 0); return hob; } void get_iiostack_info(struct iiostack_resource *info) { const IIO_UDS *hob = get_iio_uds(); // copy IIO Stack info from FSP HOB info->no_of_stacks = 0; for (int s = 0; s < hob->PlatformData.numofIIO; ++s) { for (int x = 0; x < MAX_IIO_STACK; ++x) { const STACK_RES *ri = &hob->PlatformData.IIO_resource[s].StackRes[x]; if (!is_iio_stack_res(ri)) continue; assert(info->no_of_stacks < (CONFIG_MAX_SOCKET * MAX_IIO_STACK)); memcpy(&info->res[info->no_of_stacks++], ri, sizeof(STACK_RES)); } } } unsigned int soc_get_num_cpus(void) { /* The FSP IIO UDS HOB has field numCpus, it is actually socket count */ return get_iio_uds()->SystemStatus.numCpus; } #if ENV_RAMSTAGE /* Setting devtree variables is only allowed in ramstage. */ static void get_core_thread_bits(uint32_t *core_bits, uint32_t *thread_bits) { register int ecx; struct cpuid_result cpuid_regs; /* get max index of CPUID */ cpuid_regs = cpuid(0); assert(cpuid_regs.eax >= 0xb); /* cpuid_regs.eax is max input value for cpuid */ *thread_bits = *core_bits = 0; ecx = 0; while (1) { cpuid_regs = cpuid_ext(0xb, ecx); if (ecx == 0) { *thread_bits = (cpuid_regs.eax & 0x1f); } else { *core_bits = (cpuid_regs.eax & 0x1f) - *thread_bits; break; } ecx++; } } static void get_cpu_info_from_apicid(uint32_t apicid, uint32_t core_bits, uint32_t thread_bits, uint8_t *package, uint8_t *core, uint8_t *thread) { if (package != NULL) *package = (apicid >> (thread_bits + core_bits)); if (core != NULL) *core = (uint32_t)((apicid >> thread_bits) & ~((~0) << core_bits)); if (thread != NULL) *thread = (uint32_t)(apicid & ~((~0) << thread_bits)); } void xeonsp_init_cpu_config(void) { struct device *dev; int apic_ids[CONFIG_MAX_CPUS] = {0}, apic_ids_by_thread[CONFIG_MAX_CPUS] = {0}; int num_apics = 0; uint32_t core_bits, thread_bits; unsigned int core_count, thread_count; unsigned int num_sockets; /* * sort APIC ids in asending order to identify apicid ranges for * each numa domain */ for (dev = all_devices; dev; dev = dev->next) { if ((dev->path.type != DEVICE_PATH_APIC) || (dev->bus->dev->path.type != DEVICE_PATH_CPU_CLUSTER)) { continue; } if (!dev->enabled) continue; if (num_apics >= ARRAY_SIZE(apic_ids)) break; apic_ids[num_apics++] = dev->path.apic.apic_id; } if (num_apics > 1) bubblesort(apic_ids, num_apics, NUM_ASCENDING); num_sockets = soc_get_num_cpus(); cpu_read_topology(&core_count, &thread_count); assert(num_apics == (num_sockets * thread_count)); /* sort them by thread i.e., all cores with thread 0 and then thread 1 */ int index = 0; for (int id = 0; id < num_apics; ++id) { int apic_id = apic_ids[id]; if (apic_id & 0x1) { /* 2nd thread */ apic_ids_by_thread[index + (num_apics/2) - 1] = apic_id; } else { /* 1st thread */ apic_ids_by_thread[index++] = apic_id; } } /* update apic_id, node_id in sorted order */ num_apics = 0; get_core_thread_bits(&core_bits, &thread_bits); for (dev = all_devices; dev; dev = dev->next) { uint8_t package; if ((dev->path.type != DEVICE_PATH_APIC) || (dev->bus->dev->path.type != DEVICE_PATH_CPU_CLUSTER)) { continue; } if (!dev->enabled) continue; if (num_apics >= ARRAY_SIZE(apic_ids)) break; dev->path.apic.apic_id = apic_ids_by_thread[num_apics]; get_cpu_info_from_apicid(dev->path.apic.apic_id, core_bits, thread_bits, &package, NULL, NULL); dev->path.apic.node_id = package; printk(BIOS_DEBUG, "CPU %d apic_id: 0x%x (%d), node_id: 0x%x\n", num_apics, dev->path.apic.apic_id, dev->path.apic.apic_id, dev->path.apic.node_id); ++num_apics; } } /* return true if command timed out else false */ static bool wait_for_bios_cmd_cpl(pci_devfn_t dev, uint32_t reg, uint32_t mask, uint32_t target) { const uint32_t max_delay = 5000; /* 5 seconds max */ const uint32_t step_delay = 50; /* 50 us */ struct stopwatch sw; stopwatch_init_msecs_expire(&sw, max_delay); while ((pci_s_read_config32(dev, reg) & mask) != target) { udelay(step_delay); if (stopwatch_expired(&sw)) { printk(BIOS_ERR, "%s timed out for dev: %x, reg: 0x%x, " "mask: 0x%x, target: 0x%x\n", __func__, dev, reg, mask, target); return true; /* timedout */ } } return false; /* successful */ } /* return true if command timed out else false */ static bool write_bios_mailbox_cmd(pci_devfn_t dev, uint32_t command, uint32_t data) { /* verify bios is not in busy state */ if (wait_for_bios_cmd_cpl(dev, PCU_CR1_BIOS_MB_INTERFACE_REG, BIOS_MB_RUN_BUSY_MASK, 0)) return true; /* timed out */ /* write data to data register */ printk(BIOS_SPEW, "%s - pci_s_write_config32 reg: 0x%x, data: 0x%x\n", __func__, PCU_CR1_BIOS_MB_DATA_REG, data); pci_s_write_config32(dev, PCU_CR1_BIOS_MB_DATA_REG, data); /* write the command */ printk(BIOS_SPEW, "%s - pci_s_write_config32 reg: 0x%x, data: 0x%lx\n", __func__, PCU_CR1_BIOS_MB_INTERFACE_REG, command | BIOS_MB_RUN_BUSY_MASK); pci_s_write_config32(dev, PCU_CR1_BIOS_MB_INTERFACE_REG, command | BIOS_MB_RUN_BUSY_MASK); /* wait for completion or time out*/ return wait_for_bios_cmd_cpl(dev, PCU_CR1_BIOS_MB_INTERFACE_REG, BIOS_MB_RUN_BUSY_MASK, 0); } /* return true if command timed out else false */ static bool set_bios_reset_cpl_for_package(uint32_t socket, uint32_t rst_cpl_mask, uint32_t pcode_init_mask, uint32_t val) { const uint32_t bus = get_socket_stack_busno(socket, PCU_IIO_STACK); const pci_devfn_t dev = PCI_DEV(bus, PCU_DEV, PCU_CR1_FUN); uint32_t reg = pci_s_read_config32(dev, PCU_CR1_BIOS_RESET_CPL_REG); reg &= (uint32_t) ~rst_cpl_mask; reg |= val; /* update BIOS RESET completion bit */ pci_s_write_config32(dev, PCU_CR1_BIOS_RESET_CPL_REG, reg); /* wait for PCU ack */ return wait_for_bios_cmd_cpl(dev, PCU_CR1_BIOS_RESET_CPL_REG, pcode_init_mask, pcode_init_mask); } static void set_bios_init_completion_for_package(uint32_t socket) { uint32_t data; bool timedout; const uint32_t bus = get_socket_stack_busno(socket, PCU_IIO_STACK); const pci_devfn_t dev = PCI_DEV(bus, PCU_DEV, PCU_CR1_FUN); /* read PCU config */ timedout = write_bios_mailbox_cmd(dev, BIOS_CMD_READ_PCU_MISC_CFG, 0); if (timedout) { /* 2nd try */ timedout = write_bios_mailbox_cmd(dev, BIOS_CMD_READ_PCU_MISC_CFG, 0); if (timedout) die("BIOS PCU Misc Config Read timed out.\n"); /* Since the 1st try failed, we need to make sure PCU is in stable state */ data = pci_s_read_config32(dev, PCU_CR1_BIOS_MB_DATA_REG); printk(BIOS_SPEW, "%s - pci_s_read_config32 reg: 0x%x, data: 0x%x\n", __func__, PCU_CR1_BIOS_MB_DATA_REG, data); timedout = write_bios_mailbox_cmd(dev, BIOS_CMD_WRITE_PCU_MISC_CFG, data); if (timedout) die("BIOS PCU Misc Config Write timed out.\n"); } /* update RST_CPL3, PCODE_INIT_DONE3 */ timedout = set_bios_reset_cpl_for_package(socket, RST_CPL3_MASK, PCODE_INIT_DONE3_MASK, RST_CPL3_MASK); if (timedout) die("BIOS RESET CPL3 timed out.\n"); /* update RST_CPL4, PCODE_INIT_DONE4 */ timedout = set_bios_reset_cpl_for_package(socket, RST_CPL4_MASK, PCODE_INIT_DONE4_MASK, RST_CPL4_MASK); if (timedout) die("BIOS RESET CPL4 timed out.\n"); /* set CSR_DESIRED_CORES_CFG2 lock bit */ data = pci_s_read_config32(dev, PCU_CR1_DESIRED_CORES_CFG2_REG); data |= PCU_CR1_DESIRED_CORES_CFG2_REG_LOCK_MASK; printk(BIOS_SPEW, "%s - pci_s_write_config32 PCU_CR1_DESIRED_CORES_CFG2_REG 0x%x, data: 0x%x\n", __func__, PCU_CR1_DESIRED_CORES_CFG2_REG, data); pci_s_write_config32(dev, PCU_CR1_DESIRED_CORES_CFG2_REG, data); } void set_bios_init_completion(void) { /* FIXME: This may need to be changed for multi-socket platforms */ uint32_t sbsp_socket_id = 0; /* * According to the BIOS Writer's Guide, the SBSP must be the last socket * to receive the BIOS init completion message. So, we send it to all non-SBSP * sockets first. */ for (uint32_t socket = 0; socket < soc_get_num_cpus(); ++socket) { if (socket == sbsp_socket_id) continue; set_bios_init_completion_for_package(socket); } /* And finally, take care of the SBSP */ set_bios_init_completion_for_package(sbsp_socket_id); } #endif