/* SPDX-License-Identifier: GPL-2.0-or-later */ #include #include #include #include #include #include #include #include #include #include #include #include "chip.h" /* Northbridge(NUMA) ACPI table generation. SRAT, SLIT, etc */ unsigned long acpi_create_srat_lapics(unsigned long current) { struct device *cpu; unsigned int cpu_index = 0; for (cpu = all_devices; cpu; cpu = cpu->next) { if ((cpu->path.type != DEVICE_PATH_APIC) || (cpu->bus->dev->path.type != DEVICE_PATH_CPU_CLUSTER)) { continue; } if (!cpu->enabled) continue; printk(BIOS_DEBUG, "SRAT: lapic cpu_index=%02x, node_id=%02x, apic_id=%02x\n", cpu_index, cpu->path.apic.node_id, cpu->path.apic.apic_id); current += acpi_create_srat_lapic((acpi_srat_lapic_t *)current, cpu->path.apic.node_id, cpu->path.apic.apic_id); cpu_index++; } return current; } static unsigned int get_srat_memory_entries(acpi_srat_mem_t *srat_mem) { const struct SystemMemoryMapHob *memory_map; unsigned int mmap_index; memory_map = get_system_memory_map(); assert(memory_map != NULL); printk(BIOS_DEBUG, "memory_map: %p\n", memory_map); mmap_index = 0; for (int e = 0; e < memory_map->numberEntries; ++e) { const struct SystemMemoryMapElement *mem_element = &memory_map->Element[e]; uint64_t addr = (uint64_t) ((uint64_t)mem_element->BaseAddress << MEM_ADDR_64MB_SHIFT_BITS); uint64_t size = (uint64_t) ((uint64_t)mem_element->ElementSize << MEM_ADDR_64MB_SHIFT_BITS); printk(BIOS_DEBUG, "memory_map %d addr: 0x%llx, BaseAddress: 0x%x, size: 0x%llx, " "ElementSize: 0x%x, reserved: %d\n", e, addr, mem_element->BaseAddress, size, mem_element->ElementSize, (mem_element->Type & MEM_TYPE_RESERVED)); assert(mmap_index < MAX_ACPI_MEMORY_AFFINITY_COUNT); /* skip reserved memory region */ if (mem_element->Type & MEM_TYPE_RESERVED) continue; /* skip if this address is already added */ bool skip = false; for (int idx = 0; idx < mmap_index; ++idx) { uint64_t base_addr = ((uint64_t)srat_mem[idx].base_address_high << 32) + srat_mem[idx].base_address_low; if (addr == base_addr) { skip = true; break; } } if (skip) continue; srat_mem[mmap_index].type = 1; /* Memory affinity structure */ srat_mem[mmap_index].length = sizeof(acpi_srat_mem_t); srat_mem[mmap_index].base_address_low = (uint32_t) (addr & 0xffffffff); srat_mem[mmap_index].base_address_high = (uint32_t) (addr >> 32); srat_mem[mmap_index].length_low = (uint32_t) (size & 0xffffffff); srat_mem[mmap_index].length_high = (uint32_t) (size >> 32); srat_mem[mmap_index].proximity_domain = mem_element->SocketId; srat_mem[mmap_index].flags = SRAT_ACPI_MEMORY_ENABLED; if ((mem_element->Type & MEMTYPE_VOLATILE_MASK) == 0) srat_mem[mmap_index].flags |= SRAT_ACPI_MEMORY_NONVOLATILE; ++mmap_index; } return mmap_index; } static unsigned long acpi_fill_srat(unsigned long current) { acpi_srat_mem_t srat_mem[MAX_ACPI_MEMORY_AFFINITY_COUNT]; unsigned int mem_count; /* create all subtables for processors */ current = acpi_create_srat_lapics(current); mem_count = get_srat_memory_entries(srat_mem); for (int i = 0; i < mem_count; ++i) { printk(BIOS_DEBUG, "adding srat memory %d entry length: %d, addr: 0x%x%x, " "length: 0x%x%x, proximity_domain: %d, flags: %x\n", i, srat_mem[i].length, srat_mem[i].base_address_high, srat_mem[i].base_address_low, srat_mem[i].length_high, srat_mem[i].length_low, srat_mem[i].proximity_domain, srat_mem[i].flags); memcpy((acpi_srat_mem_t *)current, &srat_mem[i], sizeof(srat_mem[i])); current += srat_mem[i].length; } return current; } static unsigned long acpi_fill_slit(unsigned long current) { unsigned int nodes = soc_get_num_cpus(); uint8_t *p = (uint8_t *)current; memset(p, 0, 8 + nodes * nodes); *p = (uint8_t)nodes; p += 8; /* this assumes fully connected socket topology */ for (int i = 0; i < nodes; i++) { for (int j = 0; j < nodes; j++) { if (i == j) p[i*nodes+j] = 10; else p[i*nodes+j] = 16; } } current += 8 + nodes * nodes; return current; } /* * This function adds PCIe bridge device entry in DMAR table. If it is called * in the context of ATSR subtable, it adds ATSR subtable when it is first called. */ static unsigned long acpi_create_dmar_ds_pci_br_for_port(unsigned long current, int port, int stack, IIO_RESOURCE_INSTANCE iio_resource, uint32_t pcie_seg, bool is_atsr, bool *first) { if (soc_get_stack_for_port(port) != stack) return 0; const uint32_t bus = iio_resource.StackRes[stack].BusBase; const uint32_t dev = iio_resource.PcieInfo.PortInfo[port].Device; const uint32_t func = iio_resource.PcieInfo.PortInfo[port].Function; const uint32_t id = pci_mmio_read_config32(PCI_DEV(bus, dev, func), PCI_VENDOR_ID); if (id == 0xffffffff) return 0; unsigned long atsr_size = 0; unsigned long pci_br_size = 0; if (is_atsr == true && first && *first == true) { printk(BIOS_DEBUG, "[Root Port ATS Capability] Flags: 0x%x, " "PCI Segment Number: 0x%x\n", 0, pcie_seg); atsr_size = acpi_create_dmar_atsr(current, 0, pcie_seg); *first = false; } printk(BIOS_DEBUG, " [PCI Bridge Device] Enumeration ID: 0x%x, " "PCI Bus Number: 0x%x, PCI Path: 0x%x, 0x%x\n", 0, bus, dev, func); pci_br_size = acpi_create_dmar_ds_pci_br(current + atsr_size, bus, dev, func); return (atsr_size + pci_br_size); } static unsigned long acpi_create_drhd(unsigned long current, int socket, int stack, const IIO_UDS *hob) { int IoApicID[] = { // socket 0 PC00_IOAPIC_ID, PC01_IOAPIC_ID, PC02_IOAPIC_ID, PC03_IOAPIC_ID, PC04_IOAPIC_ID, PC05_IOAPIC_ID, // socket 1 PC06_IOAPIC_ID, PC07_IOAPIC_ID, PC08_IOAPIC_ID, PC09_IOAPIC_ID, PC10_IOAPIC_ID, PC11_IOAPIC_ID, }; uint32_t enum_id; unsigned long tmp = current; uint32_t bus = hob->PlatformData.IIO_resource[socket].StackRes[stack].BusBase; uint32_t pcie_seg = hob->PlatformData.CpuQpiInfo[socket].PcieSegment; uint32_t reg_base = hob->PlatformData.IIO_resource[socket].StackRes[stack].VtdBarAddress; printk(BIOS_SPEW, "%s socket: %d, stack: %d, bus: 0x%x, pcie_seg: 0x%x, reg_base: 0x%x\n", __func__, socket, stack, bus, pcie_seg, reg_base); /* Do not generate DRHD for non-PCIe stack */ if (!reg_base) return current; // Add DRHD Hardware Unit if (socket == 0 && stack == CSTACK) { printk(BIOS_DEBUG, "[Hardware Unit Definition] Flags: 0x%x, PCI Segment Number: 0x%x, " "Register Base Address: 0x%x\n", DRHD_INCLUDE_PCI_ALL, pcie_seg, reg_base); current += acpi_create_dmar_drhd(current, DRHD_INCLUDE_PCI_ALL, pcie_seg, reg_base); } else { printk(BIOS_DEBUG, "[Hardware Unit Definition] Flags: 0x%x, PCI Segment Number: 0x%x, " "Register Base Address: 0x%x\n", 0, pcie_seg, reg_base); current += acpi_create_dmar_drhd(current, 0, pcie_seg, reg_base); } // Add PCH IOAPIC if (socket == 0 && stack == CSTACK) { printk(BIOS_DEBUG, " [IOAPIC Device] Enumeration ID: 0x%x, PCI Bus Number: 0x%x, " "PCI Path: 0x%x, 0x%x\n", PCH_IOAPIC_ID, PCH_IOAPIC_BUS_NUMBER, PCH_IOAPIC_DEV_NUM, PCH_IOAPIC_FUNC_NUM); current += acpi_create_dmar_ds_ioapic(current, PCH_IOAPIC_ID, PCH_IOAPIC_BUS_NUMBER, PCH_IOAPIC_DEV_NUM, PCH_IOAPIC_FUNC_NUM); } // Add IOAPIC entry enum_id = IoApicID[(socket*MAX_IIO_STACK)+stack]; printk(BIOS_DEBUG, " [IOAPIC Device] Enumeration ID: 0x%x, PCI Bus Number: 0x%x, " "PCI Path: 0x%x, 0x%x\n", enum_id, bus, APIC_DEV_NUM, APIC_FUNC_NUM); current += acpi_create_dmar_ds_ioapic(current, enum_id, bus, APIC_DEV_NUM, APIC_FUNC_NUM); // Add CBDMA devices for CSTACK if (socket != 0 && stack == CSTACK) { for (int cbdma_func_id = 0; cbdma_func_id < 8; ++cbdma_func_id) { printk(BIOS_DEBUG, " [PCI Endpoint Device] Enumeration ID: 0x%x, " "PCI Bus Number: 0x%x, PCI Path: 0x%x, 0x%x\n", 0, bus, CBDMA_DEV_NUM, cbdma_func_id); current += acpi_create_dmar_ds_pci(current, bus, CBDMA_DEV_NUM, cbdma_func_id); } } // Add PCIe Ports if (socket != 0 || stack != CSTACK) { IIO_RESOURCE_INSTANCE iio_resource = hob->PlatformData.IIO_resource[socket]; for (int p = PORT_0; p < MAX_PORTS; ++p) current += acpi_create_dmar_ds_pci_br_for_port(current, p, stack, iio_resource, pcie_seg, false, NULL); // Add VMD if (hob->PlatformData.VMDStackEnable[socket][stack] && stack >= PSTACK0 && stack <= PSTACK2) { printk(BIOS_DEBUG, " [PCI Endpoint Device] Enumeration ID: 0x%x, " "PCI Bus Number: 0x%x, PCI Path: 0x%x, 0x%x\n", 0, bus, VMD_DEV_NUM, VMD_FUNC_NUM); current += acpi_create_dmar_ds_pci(current, bus, VMD_DEV_NUM, VMD_FUNC_NUM); } } // Add HPET if (socket == 0 && stack == CSTACK) { uint16_t hpet_capid = read16((void *)HPET_BASE_ADDRESS); uint16_t num_hpets = (hpet_capid >> 0x08) & 0x1F; // Bits [8:12] has hpet count printk(BIOS_SPEW, "%s hpet_capid: 0x%x, num_hpets: 0x%x\n", __func__, hpet_capid, num_hpets); //BIT 15 if (num_hpets && (num_hpets != 0x1f) && (read32((void *)(HPET_BASE_ADDRESS + 0x100)) & (0x00008000))) { printk(BIOS_DEBUG, " [Message-capable HPET Device] Enumeration ID: 0x%x, " "PCI Bus Number: 0x%x, PCI Path: 0x%x, 0x%x\n", 0, HPET_BUS_NUM, HPET_DEV_NUM, HPET0_FUNC_NUM); current += acpi_create_dmar_ds_msi_hpet(current, 0, HPET_BUS_NUM, HPET_DEV_NUM, HPET0_FUNC_NUM); } } acpi_dmar_drhd_fixup(tmp, current); return current; } static unsigned long acpi_create_atsr(unsigned long current, const IIO_UDS *hob) { for (int socket = 0; socket < hob->PlatformData.numofIIO; ++socket) { uint32_t pcie_seg = hob->PlatformData.CpuQpiInfo[socket].PcieSegment; unsigned long tmp = current; bool first = true; IIO_RESOURCE_INSTANCE iio_resource = hob->PlatformData.IIO_resource[socket]; for (int stack = 0; stack <= PSTACK2; ++stack) { uint32_t bus = iio_resource.StackRes[stack].BusBase; uint32_t vtd_base = iio_resource.StackRes[stack].VtdBarAddress; if (!vtd_base) continue; uint64_t vtd_mmio_cap = read64((void *)(vtd_base + VTD_EXT_CAP_LOW)); printk(BIOS_SPEW, "%s socket: %d, stack: %d, bus: 0x%x, vtd_base: 0x%x, " "vtd_mmio_cap: 0x%llx\n", __func__, socket, stack, bus, vtd_base, vtd_mmio_cap); // ATSR is applicable only for platform supporting device IOTLBs // through the VT-d extended capability register assert(vtd_mmio_cap != 0xffffffffffffffff); if ((vtd_mmio_cap & 0x4) == 0) // BIT 2 continue; for (int p = PORT_0; p < MAX_PORTS; ++p) { if (socket == 0 && p == PORT_0) continue; current += acpi_create_dmar_ds_pci_br_for_port(current, p, stack, iio_resource, pcie_seg, true, &first); } } if (tmp != current) acpi_dmar_atsr_fixup(tmp, current); } return current; } static unsigned long acpi_create_rmrr(unsigned long current) { uint32_t size = ALIGN_UP(MEM_BLK_COUNT * sizeof(MEM_BLK), 0x1000); uint32_t *ptr; // reserve memory ptr = cbmem_find(CBMEM_ID_STORAGE_DATA); if (!ptr) { ptr = cbmem_add(CBMEM_ID_STORAGE_DATA, size); assert(ptr != NULL); memset(ptr, 0, size); } unsigned long tmp = current; printk(BIOS_DEBUG, "[Reserved Memory Region] PCI Segment Number: 0x%x, Base Address: 0x%x, " "End Address (limit): 0x%x\n", 0, (uint32_t) ptr, (uint32_t) ((uint32_t) ptr + size - 1)); current += acpi_create_dmar_rmrr(current, 0, (uint32_t) ptr, (uint32_t) ((uint32_t) ptr + size - 1)); printk(BIOS_DEBUG, " [PCI Endpoint Device] Enumeration ID: 0x%x, PCI Bus Number: 0x%x, " "PCI Path: 0x%x, 0x%x\n", 0, XHCI_BUS_NUMBER, PCH_DEV_SLOT_XHCI, XHCI_FUNC_NUM); current += acpi_create_dmar_ds_pci(current, XHCI_BUS_NUMBER, PCH_DEV_SLOT_XHCI, XHCI_FUNC_NUM); acpi_dmar_rmrr_fixup(tmp, current); return current; } static unsigned long acpi_create_rhsa(unsigned long current) { size_t hob_size; const uint8_t uds_guid[16] = FSP_HOB_IIO_UNIVERSAL_DATA_GUID; const IIO_UDS *hob = fsp_find_extension_hob_by_guid(uds_guid, &hob_size); assert(hob != NULL && hob_size != 0); for (int socket = 0; socket < hob->PlatformData.numofIIO; ++socket) { IIO_RESOURCE_INSTANCE iio_resource = hob->PlatformData.IIO_resource[socket]; for (int stack = 0; stack <= PSTACK2; ++stack) { uint32_t vtd_base = iio_resource.StackRes[stack].VtdBarAddress; if (!vtd_base) continue; printk(BIOS_DEBUG, "[Remapping Hardware Static Affinity] Base Address: 0x%x, " "Proximity Domain: 0x%x\n", vtd_base, socket); current += acpi_create_dmar_rhsa(current, vtd_base, socket); } } return current; } static unsigned long acpi_fill_dmar(unsigned long current) { size_t hob_size; const uint8_t uds_guid[16] = FSP_HOB_IIO_UNIVERSAL_DATA_GUID; const IIO_UDS *hob = fsp_find_extension_hob_by_guid(uds_guid, &hob_size); assert(hob != NULL && hob_size != 0); // DRHD for (int iio = 1; iio <= hob->PlatformData.numofIIO; ++iio) { int socket = iio; if (socket == hob->PlatformData.numofIIO) // socket 0 should be last DRHD entry socket = 0; if (socket == 0) { for (int stack = 1; stack <= PSTACK2; ++stack) current = acpi_create_drhd(current, socket, stack, hob); current = acpi_create_drhd(current, socket, CSTACK, hob); } else { for (int stack = 0; stack <= PSTACK2; ++stack) current = acpi_create_drhd(current, socket, stack, hob); } } // RMRR current = acpi_create_rmrr(current); // Root Port ATS Capability current = acpi_create_atsr(current, hob); // RHSA current = acpi_create_rhsa(current); return current; } unsigned long northbridge_write_acpi_tables(const struct device *device, unsigned long current, struct acpi_rsdp *rsdp) { acpi_srat_t *srat; acpi_slit_t *slit; acpi_dmar_t *dmar; const config_t *const config = config_of(device); /* SRAT */ current = ALIGN(current, 8); printk(BIOS_DEBUG, "ACPI: * SRAT at %lx\n", current); srat = (acpi_srat_t *) current; acpi_create_srat(srat, acpi_fill_srat); current += srat->header.length; acpi_add_table(rsdp, srat); /* SLIT */ current = ALIGN(current, 8); printk(BIOS_DEBUG, "ACPI: * SLIT at %lx\n", current); slit = (acpi_slit_t *) current; acpi_create_slit(slit, acpi_fill_slit); current += slit->header.length; acpi_add_table(rsdp, slit); /* DMAR */ if (config->vtd_support) { current = ALIGN(current, 8); dmar = (acpi_dmar_t *)current; printk(BIOS_DEBUG, "ACPI: * DMAR\n"); printk(BIOS_DEBUG, "[DMA Remapping table] Flags: 0x%x\n", DMAR_INTR_REMAP); acpi_create_dmar(dmar, DMAR_INTR_REMAP, acpi_fill_dmar); current += dmar->header.length; current = acpi_align_current(current); acpi_add_table(rsdp, dmar); } return current; }