/*
 * This file is part of the coreboot project.
 *
 * Copyright (C) 2016 Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <arch/io.h>
#include <commonlib/helpers.h>
#include <console/console.h>
#include <device/pci.h>
#include <device/pci_def.h>
#include <device/pci_ids.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <soc/iomap.h>
#include <soc/pci_devs.h>
#include <soc/me.h>
#include <delay.h>
#include <timer.h>

static inline u32 me_read_config32(int offset)
{
	return pci_read_config32(PCH_DEV_ME, offset);
}

static inline void me_write_config32(int offset, u32 value)
{
	pci_write_config32(PCH_DEV_ME, offset, value);
}

static inline u32 me_read_mmio32(int offset)
{
	return read32((void *)(HECI1_BASE_ADDRESS + offset));
}

static inline void me_write_mmio32(u16 offset, u32 value)
{
	write32((void *)(HECI1_BASE_ADDRESS + offset), value);
}

/* HFSTS1[3:0] Current Working State Values */
static const char *me_cws_values[] = {
	[ME_HFS_CWS_RESET]	= "Reset",
	[ME_HFS_CWS_INIT]	= "Initializing",
	[ME_HFS_CWS_REC]	= "Recovery",
	[3]			= "Unknown (3)",
	[4]			= "Unknown (4)",
	[ME_HFS_CWS_NORMAL]	= "Normal",
	[ME_HFS_CWS_WAIT]	= "Platform Disable Wait",
	[ME_HFS_CWS_TRANS]	= "OP State Transition",
	[ME_HFS_CWS_INVALID]	= "Invalid CPU Plugged In",
	[9]			= "Unknown (9)",
	[10]			= "Unknown (10)",
	[11]			= "Unknown (11)",
	[12]			= "Unknown (12)",
	[13]			= "Unknown (13)",
	[14]			= "Unknown (14)",
	[15]			= "Unknown (15)",
};

/* HFSTS1[8:6] Current Operation State Values */
static const char *me_opstate_values[] = {
	[ME_HFS_STATE_PREBOOT]	= "Preboot",
	[ME_HFS_STATE_M0_UMA]	= "M0 with UMA",
	[ME_HFS_STATE_M3]	= "M3 without UMA",
	[ME_HFS_STATE_M0]	= "M0 without UMA",
	[ME_HFS_STATE_BRINGUP]	= "Bring up",
	[ME_HFS_STATE_ERROR]	= "M0 without UMA but with error"
};

/* HFSTS1[19:16] Current Operation Mode Values */
static const char *me_opmode_values[] = {
	[ME_HFS_MODE_NORMAL]	= "Normal",
	[ME_HFS_MODE_DEBUG]	= "Debug",
	[ME_HFS_MODE_DIS]	= "Soft Temporary Disable",
	[ME_HFS_MODE_OVER_JMPR]	= "Security Override via Jumper",
	[ME_HFS_MODE_OVER_MEI]	= "Security Override via MEI Message"
};

/* HFSTS1[15:12] Error Code Values */
static const char *me_error_values[] = {
	[ME_HFS_ERROR_NONE]	= "No Error",
	[ME_HFS_ERROR_UNCAT]	= "Uncategorized Failure",
	[ME_HFS_ERROR_IMAGE]	= "Image Failure",
	[ME_HFS_ERROR_DEBUG]	= "Debug Failure"
};

/* HFSTS2[31:28] ME Progress Code */
static const char *me_progress_values[] = {
	[ME_HFS2_PHASE_ROM]		= "ROM Phase",
	[1]				= "Unknown (1)",
	[ME_HFS2_PHASE_UKERNEL]		= "uKernel Phase",
	[ME_HFS2_PHASE_BUP]		= "BUP Phase",
	[4]				= "Unknown (4)",
	[5]				= "Unknown (5)",
	[ME_HFS2_PHASE_HOST_COMM]	= "Host Communication",
	[7]				= "Unknown (7)",
	[8]				= "Unknown (8)"
};

/* HFSTS2[27:24] Power Management Event */
static const char *me_pmevent_values[] = {
	[ME_HFS2_PMEVENT_CLEAN_MOFF_MX_WAKE] =
	"Clean Moff->Mx wake",
	[ME_HFS2_PMEVENT_MOFF_MX_WAKE_ERROR] =
	"Moff->Mx wake after an error",
	[ME_HFS2_PMEVENT_CLEAN_GLOBAL_RESET] =
	"Clean global reset",
	[ME_HFS2_PMEVENT_CLEAN_GLOBAL_RESET_ERROR] =
	"Global reset after an error",
	[ME_HFS2_PMEVENT_CLEAN_ME_RESET] =
	"Clean Intel ME reset",
	[ME_HFS2_PMEVENT_ME_RESET_EXCEPTION] =
	"Intel ME reset due to exception",
	[ME_HFS2_PMEVENT_PSEUDO_ME_RESET] =
	"Pseudo-global reset",
	[ME_HFS2_PMEVENT_CM0_CM3] =
	"CM0->CM3",
	[ME_HFS2_PMEVENT_CM3_CM0] =
	"CM3->CM0",
	[ME_HFS2_PMEVENT_NON_PWR_CYCLE_RESET] =
	"Non-power cycle reset",
	[ME_HFS2_PMEVENT_PWR_CYCLE_RESET_M3] =
	"Power cycle reset through M3",
	[ME_HFS2_PMEVENT_PWR_CYCLE_RESET_MOFF] =
	"Power cycle reset through Moff",
	[ME_HFS2_PMEVENT_CMX_CMOFF] =
	"Cx/Mx->Cx/Moff",
	[ME_HFS2_PMEVENT_CM0_CM0PG] =
	"CM0->CM0PG",
	[ME_HFS2_PMEVENT_CM3_CM3PG] =
	"CM3->CM3PG",
	[ME_HFS2_PMEVENT_CM0PG_CM0] =
	"CM0PG->CM0"

};

/* Progress Code 0 states */
static const char *me_progress_rom_values[] = {
	[ME_HFS2_STATE_ROM_BEGIN]	= "BEGIN",
	[ME_HFS2_STATE_ROM_DISABLE]	= "DISABLE"
};

/* Progress Code 1 states */
static const char *me_progress_bup_values[] = {
	[ME_HFS2_STATE_BUP_INIT] =
	"Initialization starts",
	[ME_HFS2_STATE_BUP_DIS_HOST_WAKE] =
	"Disable the host wake event",
	[ME_HFS2_STATE_BUP_CG_ENABLE] =
	"Enabling CG for cset",
	[ME_HFS2_STATE_BUP_PM_HND_EN] =
	"Enabling PM handshaking",
	[ME_HFS2_STATE_BUP_FLOW_DET] =
	"Flow determination start process",
	[ME_HFS2_STATE_BUP_PMC_PATCHING] =
	"PMC Patching process",
	[ME_HFS2_STATE_BUP_GET_FLASH_VSCC] =
	"Get VSCC params",
	[ME_HFS2_STATE_BUP_SET_FLASH_VSCC] =
	"Set VSCC params",
	[ME_HFS2_STATE_BUP_VSCC_ERR] =
	"Error reading/matching the VSCC table in the descriptor",
	[ME_HFS2_STATE_BUP_EFSS_INIT] =
	"Initialize EFFS",
	[ME_HFS2_STATE_BUP_CHECK_STRAP] =
	"Check to see if straps say ME DISABLED",
	[ME_HFS2_STATE_BUP_PWR_OK_TIMEOUT] =
	"Timeout waiting for PWROK",
	[ME_HFS2_STATE_BUP_STRAP_DIS] =
	"EFFS says ME disabled",
	[ME_HFS2_STATE_BUP_MANUF_OVRD_STRAP] =
	"Possibly handle BUP manufacturing override strap",
	[ME_HFS2_STATE_BUP_M3] =
	"Bringup in M3",
	[ME_HFS2_STATE_BUP_M0] =
	"Bringup in M0",
	[ME_HFS2_STATE_BUP_FLOW_DET_ERR] =
	"Flow detection error",
	[ME_HFS2_STATE_BUP_M3_CLK_ERR] =
	"M3 clock switching error",
	[ME_HFS2_STATE_BUP_CPU_RESET_DID_TIMEOUT_MEM_MISSING] =
	"Host error - CPU reset timeout, DID timeout, memory missing",
	[ME_HFS2_STATE_BUP_M3_KERN_LOAD] =
	"M3 kernel load",
	[ME_HFS2_STATE_BUP_T32_MISSING] =
	"T34 missing - cannot program ICC",
	[ME_HFS2_STATE_BUP_WAIT_DID] =
	"Waiting for DID BIOS message",
	[ME_HFS2_STATE_BUP_WAIT_DID_FAIL] =
	"Waiting for DID BIOS message failure",
	[ME_HFS2_STATE_BUP_DID_NO_FAIL] =
	"DID reported no error",
	[ME_HFS2_STATE_BUP_ENABLE_UMA] =
	"Enabling UMA",
	[ME_HFS2_STATE_BUP_ENABLE_UMA_ERR] =
	"Enabling UMA error",
	[ME_HFS2_STATE_BUP_SEND_DID_ACK] =
	"Sending DID Ack to BIOS",
	[ME_HFS2_STATE_BUP_SEND_DID_ACK_ERR] =
	"Sending DID Ack to BIOS error",
	[ME_HFS2_STATE_BUP_M0_CLK] =
	"Switching clocks in M0",
	[ME_HFS2_STATE_BUP_M0_CLK_ERR] =
	"Switching clocks in M0 error",
	[ME_HFS2_STATE_BUP_TEMP_DIS] =
	"ME in temp disable",
	[ME_HFS2_STATE_BUP_M0_KERN_LOAD] =
	"M0 kernel load",
};

void intel_me_status(void)
{
	union me_hfs hfs;
	union me_hfs2 hfs2;
	union me_hfs3 hfs3;

	hfs.data = me_read_config32(PCI_ME_HFSTS1);
	hfs2.data = me_read_config32(PCI_ME_HFSTS2);
	hfs3.data = me_read_config32(PCI_ME_HFSTS3);

	/* Check Current States */
	printk(BIOS_DEBUG, "ME: FW Partition Table      : %s\n",
	       hfs.fields.fpt_bad ? "BAD" : "OK");
	printk(BIOS_DEBUG, "ME: Bringup Loader Failure  : %s\n",
	       hfs.fields.ft_bup_ld_flr ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: Firmware Init Complete  : %s\n",
	       hfs.fields.fw_init_complete ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: Manufacturing Mode      : %s\n",
	       hfs.fields.mfg_mode ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: Boot Options Present    : %s\n",
	       hfs.fields.boot_options_present ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: Update In Progress      : %s\n",
	       hfs.fields.update_in_progress ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: D3 Support              : %s\n",
	       hfs.fields.d3_support_valid ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: D0i3 Support            : %s\n",
	       hfs.fields.d0i3_support_valid ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: Low Power State Enabled : %s\n",
	       hfs2.fields.low_power_state ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: Power Gated             : %s\n",
	       hfs2.fields.power_gating_ind ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: CPU Replaced            : %s\n",
	       hfs2.fields.cpu_replaced_sts  ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: CPU Replacement Valid   : %s\n",
	       hfs2.fields.cpu_replaced_valid ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: Current Working State   : %s\n",
	       me_cws_values[hfs.fields.working_state]);
	printk(BIOS_DEBUG, "ME: Current Operation State : %s\n",
	       me_opstate_values[hfs.fields.operation_state]);
	printk(BIOS_DEBUG, "ME: Current Operation Mode  : %s\n",
	       me_opmode_values[hfs.fields.operation_mode]);
	printk(BIOS_DEBUG, "ME: Error Code              : %s\n",
	       me_error_values[hfs.fields.error_code]);
	printk(BIOS_DEBUG, "ME: Progress Phase          : %s\n",
	       me_progress_values[hfs2.fields.progress_code]);
	printk(BIOS_DEBUG, "ME: Power Management Event  : %s\n",
	       me_pmevent_values[hfs2.fields.current_pmevent]);

	printk(BIOS_DEBUG, "ME: Progress Phase State    : ");
	switch (hfs2.fields.progress_code) {
	case ME_HFS2_PHASE_ROM:		/* ROM Phase */
		printk(BIOS_DEBUG, "%s",
		       me_progress_rom_values[hfs2.fields.current_state]);
		break;

	case ME_HFS2_PHASE_UKERNEL:	/* uKernel Phase */
		printk(BIOS_DEBUG, "0x%02x", hfs2.fields.current_state);
		break;

	case ME_HFS2_PHASE_BUP:		/* Bringup Phase */
		if (hfs2.fields.current_state < ARRAY_SIZE(me_progress_bup_values)
		    && me_progress_bup_values[hfs2.fields.current_state])
			printk(BIOS_DEBUG, "%s",
			       me_progress_bup_values[hfs2.fields.current_state]);
		else
			printk(BIOS_DEBUG, "0x%02x", hfs2.fields.current_state);
		break;

	case ME_HFS2_PHASE_HOST_COMM:	/* Host Communication Phase */
		if (!hfs2.fields.current_state)
			printk(BIOS_DEBUG, "Host communication established");
		else
			printk(BIOS_DEBUG, "0x%02x", hfs2.fields.current_state);
		break;

	default:
		printk(BIOS_DEBUG, "Unknown phase: 0x%02x state: 0x%02x",
		       hfs2.fields.progress_code, hfs2.fields.current_state);
	}
	printk(BIOS_DEBUG, "\n");

	/* Power Down Mitigation Status */
	printk(BIOS_DEBUG, "ME: Power Down Mitigation   : %s\n",
	       hfs3.fields.power_down_mitigation ? "YES" : "NO");

	if (hfs3.fields.power_down_mitigation) {
		printk(BIOS_INFO, "ME: PD Mitigation State     : ");
		if (hfs3.fields.encrypt_key_override == 1 &&
		    hfs3.fields.encrypt_key_check == 0 &&
		    hfs3.fields.pch_config_change == 0)
			printk(BIOS_INFO, "Normal Operation");
		else if (hfs3.fields.encrypt_key_override == 1 &&
			 hfs3.fields.encrypt_key_check == 1 &&
			 hfs3.fields.pch_config_change == 0)
			printk(BIOS_INFO, "Issue Detected and Recovered");
		else
			printk(BIOS_INFO, "Issue Detected but not Recovered");
		printk(BIOS_INFO, "\n");

		printk(BIOS_DEBUG, "ME: Encryption Key Override : %s\n",
		       hfs3.fields.encrypt_key_override ? "Workaround Applied" :
		       "Unable to override");
		printk(BIOS_DEBUG, "ME: Encryption Key Check    : %s\n",
		       hfs3.fields.encrypt_key_check ? "FAIL" : "PASS");
		printk(BIOS_DEBUG, "ME: PCH Configuration Info  : %s\n",
		       hfs3.fields.pch_config_change ? "Changed" : "No Change");

		printk(BIOS_DEBUG, "ME: Firmware SKU            : ");
		switch (hfs3.fields.fw_sku) {
		case ME_HFS3_FW_SKU_CONSUMER:
			printk(BIOS_DEBUG, "Consumer\n");
			break;
		case ME_HFS3_FW_SKU_CORPORATE:
			printk(BIOS_DEBUG, "Corporate\n");
			break;
		default:
			printk(BIOS_DEBUG, "Unknown (0x%x)\n", hfs3.fields.fw_sku);
		}
	}
}

/*
* Aligning a byte length to length in dwords.
*/
static u32 get_dword_length(u32 byte_length)
{
	return ALIGN_UP(byte_length, sizeof(uint32_t)) / sizeof(uint32_t);
}

/*
* Get remaining message count in dword from circular buffer based on
* write and read offset.
*/
static u32 get_cb_msg_count(u32 data)
{
	u8 read_offset = data >> 8;
	u8 write_offset = data >> 16;

	return get_dword_length(write_offset - read_offset);
}

static int wait_heci_ready(void)
{
	struct stopwatch sw;
	int timeout = 0;
	union me_csr csr;

	stopwatch_init_msecs_expire(&sw, HECI_TIMEOUT);
	while (1) {
		do {
			csr.data = me_read_mmio32(MMIO_ME_CSR);
			if (csr.fields.host_ready)
				return 0;
		} while (!(timeout = stopwatch_expired(&sw)));

		printk(BIOS_ERR, "ME_RDY bit is not set after 15 sec");
		return -1;
	}
}

static int wait_heci_cb_avail(u32 len)
{
	struct stopwatch sw;
	union host_csr csr;

	csr.data = me_read_mmio32(MMIO_HOST_CSR);
	/*
	* if timeout has happened, return failure as
	* the circular buffer is not empty
	*/
	stopwatch_init_msecs_expire(&sw, HECI_SEND_TIMEOUT);
	/* Must have room for message and message header */
	while (len > (get_dword_length(csr.fields.me_cir_depth) -
			get_cb_msg_count(csr.data))) {
		if (stopwatch_expired(&sw)) {
			printk(BIOS_ERR,
			"Circular Buffer never emptied within 5 sec");
			return -1;
		}
		/* wait before trying again */
		udelay(HECI_DELAY);
		/* read HOST_CSR for next iteration */
		csr.data = me_read_mmio32(MMIO_HOST_CSR);
	}
	return 0;
}

static int send_heci_packet(union mei_header *head, u32 len, u32 *payload)
{
	int sts;
	int index;
	union me_csr csr;
	union host_csr hcsr;

	/*
	 * wait until there is sufficient room in CB
	 */
	sts = wait_heci_cb_avail(len + 1);
	if (sts != 0)
		return -1;

	/* Write message header */
	me_write_mmio32(MMIO_ME_CB_WW, head->data);

	/* Write message body */
	for (index = 0; index < len; index++)
		me_write_mmio32(MMIO_ME_CB_WW, payload[index]);

	/* Set Interrupt Generate bit */
	hcsr.data = me_read_mmio32(MMIO_HOST_CSR);
	hcsr.fields.int_gen = 1;
	me_write_mmio32(MMIO_HOST_CSR, hcsr.data);

	/* Check if ME Ready bit is set, if set to 0 then return fatal error */
	csr.data = me_read_mmio32(MMIO_ME_CSR);
	if (csr.fields.host_ready)
		return 0;
	else
		return -1;
}

static int recv_heci_packet(union mei_header *head, u32 *packet,
		 u32 *packet_size)
{
	union me_csr csr;
	union host_csr hcsr;
	int rec_msg = 0;
	struct stopwatch sw;
	u32 length, index;

	/* Clear Interrupt Status bit */
	hcsr.data = me_read_mmio32(MMIO_HOST_CSR);
	hcsr.fields.int_sts = 1;
	me_write_mmio32(MMIO_HOST_CSR, hcsr.data);

	/* Check if circular buffer overflow
	 * if yes then return fatal error
	 */
	csr.data = me_read_mmio32(MMIO_ME_CSR);
	if (get_cb_msg_count(csr.data) >
			get_dword_length(csr.fields.me_cir_buff))
		return -1;
	/*
	* if timeout has happened, return failure as
	* the circular buffer is not empty
	*/
	stopwatch_init_msecs_expire(&sw, HECI_READ_TIMEOUT);
	/* go until we got message pkt */
	do {
		if (stopwatch_expired(&sw)) {
			printk(BIOS_ERR,
			"Circular Buffer not filled within 5 sec");
			*packet_size = 0;
			return -1;
		}
		csr.data = me_read_mmio32(MMIO_ME_CSR);
		/* Read one message from HECI buffer */
		if (get_cb_msg_count(csr.data) > 0) {
			head->data = me_read_mmio32(MMIO_ME_CB_RW);
			/* calculate the message length in dword */
			length = get_dword_length(head->fields.length);
			if (head->fields.length == 0) {
				*packet_size = 0;
				goto SET_IG;
			}
			/* Make sure, we have enough space to catch all */
			if (head->fields.length <= *packet_size) {
				csr.data = me_read_mmio32(MMIO_ME_CSR);
				/* get complete message into circular buffer */
				while (length > get_cb_msg_count(csr.data)) {
					udelay(HECI_DELAY);
					csr.data = me_read_mmio32(MMIO_ME_CSR);
				}
				/* here is the message */
				for (index = 0; index < length; index++)
					packet[index] = me_read_mmio32(MMIO_ME_CB_RW);

				rec_msg = 1;
				*packet_size = head->fields.length;
			} else {
				/* Too small buffer */
				*packet_size = 0;
				return -1;
			}
		}
	} while (!rec_msg);

	/*
	 * Check if ME Ready bit is set, if set to 0 then return fatal error
	 * because ME might have reset during transaction and we might have
	 * read a junk data from CB
	*/
	csr.data = me_read_mmio32(MMIO_ME_CSR);
	if (!(csr.fields.host_ready))
		return -1;
SET_IG:
	/* Set Interrupt Generate bit */
	hcsr.data = me_read_mmio32(MMIO_HOST_CSR);
	hcsr.fields.int_gen = 1;
	me_write_mmio32(MMIO_HOST_CSR, hcsr.data);
	return 0;
}

static int
send_heci_message(void *msg, int len, u8 hostaddress, u8 clientaddress)
{
	u8 retry;
	int status = -1;
	u32 cir_buff_depth;
	union host_csr csr;
	union mei_header head;
	int cur = 0;
	u32 slength, rlength;

	for (retry = 0; retry < MAX_HECI_MESSAGE; retry++) {
		if (wait_heci_ready() != 0)
			continue;
		/* HECI is ready */
		csr.data = me_read_mmio32(MMIO_HOST_CSR);
		cir_buff_depth = csr.fields.me_cir_depth;
		head.fields.client_address = clientaddress;
		head.fields.host_address = hostaddress;
		while (len > cur) {
			rlength = get_dword_length(len - cur);
			/*
			 * Set the message complete bit if this is last packet
			 * in message needs to be "less than" to account for
			 * the header OR needs to be exact equal to CB depth
			 */
			if (rlength <= cir_buff_depth)
				head.fields.is_complete = 1;
			else
				head.fields.is_complete = 0;
			/*
			 * calculate length for message header
			 * header length = smaller of CB buffer or
			 * remaining message
			 */
			slength = ((cir_buff_depth <= rlength)
					? ((cir_buff_depth - 1) * 4)
					: (len - cur));
			head.fields.length = slength;
			head.fields.reserved = 0;
			/*
			 * send the current packet
			 * (cur should be treated as index for message)
			 */
			status = send_heci_packet(&head,
				get_dword_length(head.fields.length), msg);
			if (status != 0)
				break;
			/* update the length information */
			cur += slength;
			msg += cur;
		}
		if (!status)
			break;
	}
	return status;
}

static int
recv_heci_message(void *message, u32 * message_size)
{
	union mei_header head;
	int cur = 0;
	u8 retry;
	int status = -1;
	int msg_complete = 0;
	u32 pkt_buff;

	for (retry = 0; retry < MAX_HECI_MESSAGE; retry++) {
		if (wait_heci_ready() != 0)
			continue;
		/* HECI is ready */
		while ((cur < *message_size) && (msg_complete == 0)) {
			pkt_buff = *message_size - cur;
			status = recv_heci_packet(&head, message + (cur >> 2),
						&pkt_buff);
			if (status == -1) {
				*message_size = 0;
				break;
			}
			msg_complete = head.fields.is_complete;
			if (pkt_buff == 0) {
				/* if not in middle of msg and msg complete bit
				 * is set then this is a valid zero length msg
				 */
				if ((cur == 0) && (msg_complete == 1))
					status = 0;
				else
					status = -1;
				*message_size = 0;
				break;
			}
			cur += pkt_buff;
		}
		if (!status) {
			*message_size = cur;
			break;
		}
	}
	return status;
}

static int send_heci_reset_message(void)
{
	int status;
	struct reset_reply {
		u8 group_id;
		u8 command;
		u8 reserved;
		u8 result;
	} __attribute__ ((packed)) reply;
	struct reset_message {
		u8 group_id;
		u8 cmd;
		u8 reserved;
		u8 result;
		u8 req_origin;
		u8 reset_type;
	} __attribute__ ((packed));
	struct reset_message msg = {
		.cmd = MKHI_GLOBAL_RESET,
		.req_origin = GR_ORIGIN_BIOS_POST,
		.reset_type = GLOBAL_RST_TYPE
	};
	u32 reply_size;

	status= send_heci_message(&msg, sizeof(msg),
			BIOS_HOST_ADD, HECI_MKHI_ADD);
	if (status != 0)
		return -1;

	reply_size = sizeof(reply);
	if (recv_heci_message(&reply, &reply_size) == -1)
		return -1;
	/* get reply result from HECI MSG  */
	if (reply.result != 0) {
		printk(BIOS_DEBUG, "%s: Exit with Failure\n", __func__);
		return -1;
	} else {
		printk(BIOS_DEBUG, "%s: Exit with Success\n",  __func__);
		return 0;
	}
}

int send_global_reset(void)
{
	int status = -1;
	union me_hfs hfs;

	/* Check ME operating mode */
	hfs.data = me_read_config32(PCI_ME_HFSTS1);
	if (hfs.fields.operation_mode)
		goto ret;

	/* ME should be in Normal Mode for this command */
	status = send_heci_reset_message();
ret:
	return status;
}