/* * Copyright (C) 2014 Google Inc. * Copyright (C) 2015 Intel Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc. */ /* This file is derived from the flashrom project. */ #include #include #include #include #include #include #include #include #include #include #include #if !(ENV_ROMSTAGE) typedef struct spi_slave pch_spi_slave; static struct spi_flash *spi_flash_hwseq_probe(struct spi_slave *spi); #endif unsigned int spi_crop_chunk(unsigned int cmd_len, unsigned int buf_len) { pch_spi_regs *spi_bar; spi_bar = get_spi_bar(); return min(sizeof(spi_bar->fdata), buf_len); } #if !(ENV_ROMSTAGE) struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs) { pch_spi_slave *slave = malloc(sizeof(*slave)); if (!slave) { printk(BIOS_DEBUG, "PCH SPI: Bad allocation\n"); return NULL; } memset(slave, 0, sizeof(*slave)); slave->bus = bus; slave->cs = cs; slave->force_programmer_specific = 1; slave->programmer_specific_probe = spi_flash_hwseq_probe; return slave; } #endif static u32 spi_get_flash_size(pch_spi_regs *spi_bar) { uint32_t flcomp; u32 size; writel_(SPIBAR_FDOC_COMPONENT, &spi_bar->fdoc); flcomp = readl_(&spi_bar->fdod); printk(BIOS_DEBUG, "flcomp = %x\n", flcomp); switch (flcomp & FLCOMP_C0DEN_MASK) { case FLCOMP_C0DEN_8MB: size = 0x100000; break; case FLCOMP_C0DEN_16MB: size = 0x1000000; break; case FLCOMP_C0DEN_32MB: size = 0x10000000; break; default: size = 0x1000000; } printk(BIOS_DEBUG, "flash size 0x%x bytes\n", size); return size; } int spi_xfer(struct spi_slave *slave, const void *dout, unsigned int bytesout, void *din, unsigned int bytesin) { /* TODO: Define xfer for hardware sequencing. */ return -1; } void spi_init(void) { uint8_t bios_cntl; device_t dev = PCH_DEV_SPI; pch_spi_regs *spi_bar; uint16_t hsfs; /* Root Complex Register Block */ spi_bar = get_spi_bar(); hsfs = readw_(&spi_bar->hsfs); if (hsfs & HSFS_FDV) { /* Select Flash Descriptor Section Index to 1 */ writel_(SPIBAR_FDOC_FDSI_1, &spi_bar->fdoc); } /* Disable the BIOS write protect so write commands are allowed. */ pci_read_config_byte(dev, SPIBAR_BIOS_CNTL, &bios_cntl); bios_cntl &= ~SPIBAR_BC_EISS; bios_cntl |= SPIBAR_BC_WPD; pci_write_config_byte(dev, SPIBAR_BIOS_CNTL, bios_cntl); } int spi_claim_bus(struct spi_slave *slave) { /* Handled by PCH automatically. */ return 0; } void spi_release_bus(struct spi_slave *slave) { /* Handled by PCH automatically. */ } static void pch_hwseq_set_addr(uint32_t addr, pch_spi_regs *spi_bar) { uint32_t addr_old = readl_(&spi_bar->faddr) & ~SPIBAR_FADDR_MASK; writel_((addr & SPIBAR_FADDR_MASK) | addr_old, &spi_bar->faddr); } /* * Polls for Cycle Done Status, Flash Cycle Error or timeout in 8 us intervals. * Resets all error flags in HSFS. * Returns 0 if the cycle completes successfully without errors within * timeout us, 1 on errors. */ static int pch_hwseq_wait_for_cycle_complete(unsigned int timeout, unsigned int len, pch_spi_regs *spi_bar) { uint16_t hsfs; uint32_t addr; timeout /= 8; /* scale timeout duration to counter */ while ((((hsfs = readw_(&spi_bar->hsfs)) & (HSFS_FDONE | HSFS_FCERR)) == 0) && --timeout) { udelay(8); } writew_(readw_(&spi_bar->hsfs), &spi_bar->hsfs); if (!timeout) { uint16_t hsfc; addr = readl_(&spi_bar->faddr) & SPIBAR_FADDR_MASK; hsfc = readw_(&spi_bar->hsfc); printk(BIOS_ERR, "Transaction timeout between offset 0x%08x \ and 0x%08x (= 0x%08x + %d) HSFC=%x HSFS=%x!\n", addr, addr + len - 1, addr, len - 1, hsfc, hsfs); return 1; } if (hsfs & HSFS_FCERR) { uint16_t hsfc; addr = readl_(&spi_bar->faddr) & SPIBAR_FADDR_MASK; hsfc = readw_(&spi_bar->hsfc); printk(BIOS_ERR, "Transaction error between offset 0x%08x and \ 0x%08x (= 0x%08x + %d) HSFC=%x HSFS=%x!\n", addr, addr + len - 1, addr, len - 1, hsfc, hsfs); return 1; } return 0; } int pch_hwseq_erase(struct spi_flash *flash, u32 offset, size_t len) { u32 start, end, erase_size; int ret; uint16_t hsfc; uint32_t timeout = 5000 * 1000; /* 5 s for max 64 kB */ pch_spi_regs *spi_bar; spi_bar = get_spi_bar(); erase_size = flash->sector_size; if (offset % erase_size || len % erase_size) { printk(BIOS_ERR, "SF: Erase offset/length not multiple of erase size\n"); return -1; } flash->spi->rw = SPI_WRITE_FLAG; ret = spi_claim_bus(flash->spi); if (ret) { printk(BIOS_ERR, "SF: Unable to claim SPI bus\n"); return ret; } start = offset; end = start + len; while (offset < end) { /* * Make sure FDONE, FCERR, AEL are * cleared by writing 1 to them. */ writew_(readw_(&spi_bar->hsfs), &spi_bar->hsfs); pch_hwseq_set_addr(offset, spi_bar); offset += erase_size; hsfc = readw_(&spi_bar->hsfc); hsfc &= ~HSFC_FCYCLE; /* clear operation */ hsfc |= HSFC_FCYCLE; /* set erase operation */ hsfc |= HSFC_FGO; /* start */ writew_(hsfc, &spi_bar->hsfc); if (pch_hwseq_wait_for_cycle_complete(timeout, len, spi_bar)) { printk(BIOS_ERR, "SF: Erase failed at %x\n", offset - erase_size); ret = -1; goto out; } } printk(BIOS_DEBUG, "SF: Successfully erased %zu bytes @ %#x\n", len, start); out: spi_release_bus(flash->spi); return ret; } static void pch_read_data(uint8_t *data, int len, pch_spi_regs *spi_bar) { int i; uint32_t temp32 = 0; for (i = 0; i < len; i++) { if ((i % 4) == 0) temp32 = readl_((uint8_t *)spi_bar->fdata + i); data[i] = (temp32 >> ((i % 4) * 8)) & 0xff; } } int pch_hwseq_read(struct spi_flash *flash, u32 addr, size_t len, void *buf) { uint16_t hsfc; uint16_t timeout = 100 * 60; /* 6 mili secs timeout */ uint8_t block_len; pch_spi_regs *spi_bar; spi_bar = get_spi_bar(); if (addr + len > spi_get_flash_size(spi_bar)) { printk(BIOS_ERR, "Attempt to read %x-%x which is out of chip\n", (unsigned) addr, (unsigned) addr+(unsigned) len); return -1; } /* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */ writew_(readw_(&spi_bar->hsfs), &spi_bar->hsfs); while (len > 0) { block_len = min(len, sizeof(spi_bar->fdata)); if (block_len > (~addr & 0xff)) block_len = (~addr & 0xff) + 1; pch_hwseq_set_addr(addr, spi_bar); hsfc = readw_(&spi_bar->hsfc); hsfc &= ~HSFC_FCYCLE; /* set read operation */ hsfc &= ~HSFC_FDBC; /* clear byte count */ /* set byte count */ hsfc |= (((block_len - 1) << HSFC_FDBC_SHIFT) & HSFC_FDBC); hsfc |= HSFC_FGO; /* start */ writew_(hsfc, &spi_bar->hsfc); if (pch_hwseq_wait_for_cycle_complete (timeout, block_len, spi_bar)) return -1; pch_read_data(buf, block_len, spi_bar); addr += block_len; buf += block_len; len -= block_len; } return 0; } /* Fill len bytes from the data array into the fdata/spid registers. * * Note that using len > flash->pgm->spi.max_data_write will trash the registers * following the data registers. */ static void pch_fill_data(const uint8_t *data, int len) { uint32_t temp32 = 0; int i; pch_spi_regs *spi_bar; spi_bar = get_spi_bar(); if (len <= 0) return; for (i = 0; i < len; i++) { if ((i % 4) == 0) temp32 = 0; temp32 |= ((uint32_t) data[i]) << ((i % 4) * 8); if ((i % 4) == 3) /* 32 bits are full, write them to regs. */ writel_(temp32, (uint8_t *)spi_bar->fdata + (i - (i % 4))); } i--; if ((i % 4) != 3) /* Write remaining data to regs. */ writel_(temp32, (uint8_t *)spi_bar->fdata + (i - (i % 4))); } int pch_hwseq_write(struct spi_flash *flash, u32 addr, size_t len, const void *buf) { uint16_t hsfc; uint16_t timeout = 100 * 60; /* 6 mili secs timeout */ uint8_t block_len; uint32_t start = addr; pch_spi_regs *spi_bar; spi_bar = get_spi_bar(); if (addr + len > spi_get_flash_size(spi_bar)) { printk(BIOS_ERR, "Attempt to write 0x%x-0x%x which is out of chip\n", (unsigned)addr, (unsigned) (addr+len)); return -1; } /* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */ writew_(readw_(&spi_bar->hsfs), &spi_bar->hsfs); while (len > 0) { block_len = min(len, sizeof(spi_bar->fdata)); if (block_len > (~addr & 0xff)) block_len = (~addr & 0xff) + 1; pch_hwseq_set_addr(addr, spi_bar); pch_fill_data(buf, block_len); hsfc = readw_(&spi_bar->hsfc); hsfc &= ~HSFC_FCYCLE; /* clear operation */ hsfc |= HSFC_FCYCLE_WR; /* set write operation */ hsfc &= ~HSFC_FDBC; /* clear byte count */ /* set byte count */ hsfc |= (((block_len - 1) << HSFC_FDBC_SHIFT) & HSFC_FDBC); hsfc |= HSFC_FGO; /* start */ writew_(hsfc, &spi_bar->hsfc); if (pch_hwseq_wait_for_cycle_complete (timeout, block_len, spi_bar)) { printk(BIOS_ERR, "SF: write failure at %x\n", addr); return -1; } addr += block_len; buf += block_len; len -= block_len; } printk(BIOS_DEBUG, "SF: Successfully written %u bytes @ %#x\n", (unsigned) (addr - start), start); return 0; } int pch_hwseq_read_status(struct spi_flash *flash, u8 *reg) { uint16_t hsfc; uint16_t timeout = 100 * 60; /* 6 mili secs timeout */ uint8_t block_len = SPI_READ_STATUS_LENGTH; pch_spi_regs *spi_bar; spi_bar = get_spi_bar(); /* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */ writew_(readw_(&spi_bar->hsfs), &spi_bar->hsfs); hsfc = readw_(&spi_bar->hsfc); hsfc &= ~HSFC_FCYCLE; /* set read operation */ /* read status register */ hsfc |= HSFC_FCYCLE_RS; hsfc &= ~HSFC_FDBC; /* clear byte count */ /* set byte count */ hsfc |= (((block_len - 1) << HSFC_FDBC_SHIFT) & HSFC_FDBC); hsfc |= HSFC_FGO; /* start */ writew_(hsfc, &spi_bar->hsfc); if (pch_hwseq_wait_for_cycle_complete(timeout, block_len, spi_bar)) return -1; pch_read_data(reg, block_len, spi_bar); /* clear read status register */ writew_(readw_(&spi_bar->hsfc) & ~HSFC_FCYCLE_RS, &spi_bar->hsfc); return 0; } #if !(ENV_ROMSTAGE) static struct spi_flash *spi_flash_hwseq_probe(struct spi_slave *spi) { struct spi_flash *flash = NULL; u32 berase; pch_spi_regs *spi_bar; spi_bar = get_spi_bar(); flash = malloc(sizeof(*flash)); if (!flash) { printk(BIOS_WARNING, "SF: Failed to allocate memory\n"); return NULL; } flash->spi = spi; flash->name = "Opaque HW-sequencing"; flash->write = pch_hwseq_write; flash->erase = pch_hwseq_erase; flash->read = pch_hwseq_read; flash->status = pch_hwseq_read_status; pch_hwseq_set_addr(0, spi_bar); berase = ((readw_(&spi_bar->hsfs)) >> SPIBAR_HSFS_BERASE_OFFSET) & SPIBAR_HSFS_BERASE_MASK; switch (berase) { case 0: flash->sector_size = 256; break; case 1: flash->sector_size = 4096; break; case 2: flash->sector_size = 8192; break; case 3: flash->sector_size = 65536; break; } flash->size = spi_get_flash_size(spi_bar); return flash; } #endif