/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "chip.h" static void configure_isst(void) { config_t *conf = config_of_soc(); msr_t msr; if (conf->speed_shift_enable) { /* * Kernel driver checks CPUID.06h:EAX[Bit 7] to determine if HWP * is supported or not. coreboot needs to configure MSR 0x1AA * which is then reflected in the CPUID register. */ msr = rdmsr(MSR_MISC_PWR_MGMT); msr.lo |= MISC_PWR_MGMT_ISST_EN; /* Enable Speed Shift */ msr.lo |= MISC_PWR_MGMT_ISST_EN_INT; /* Enable Interrupt */ msr.lo |= MISC_PWR_MGMT_ISST_EN_EPP; /* Enable EPP */ wrmsr(MSR_MISC_PWR_MGMT, msr); } else { msr = rdmsr(MSR_MISC_PWR_MGMT); msr.lo &= ~MISC_PWR_MGMT_ISST_EN; /* Disable Speed Shift */ msr.lo &= ~MISC_PWR_MGMT_ISST_EN_INT; /* Disable Interrupt */ msr.lo &= ~MISC_PWR_MGMT_ISST_EN_EPP; /* Disable EPP */ wrmsr(MSR_MISC_PWR_MGMT, msr); } } static void configure_misc(void) { config_t *conf = config_of_soc(); msr_t msr; msr = rdmsr(IA32_MISC_ENABLE); msr.lo |= (1 << 0); /* Fast String enable */ msr.lo |= (1 << 3); /* TM1/TM2/EMTTM enable */ wrmsr(IA32_MISC_ENABLE, msr); /* Set EIST status */ cpu_set_eist(conf->eist_enable); /* Disable Thermal interrupts */ msr.lo = 0; msr.hi = 0; wrmsr(IA32_THERM_INTERRUPT, msr); /* Enable package critical interrupt only */ msr.lo = 1 << 4; msr.hi = 0; wrmsr(IA32_PACKAGE_THERM_INTERRUPT, msr); msr = rdmsr(MSR_POWER_CTL); msr.lo |= (1 << 0); /* Enable Bi-directional PROCHOT as an input*/ msr.lo |= (1 << 18); /* Enable Energy/Performance Bias control */ msr.lo &= ~POWER_CTL_C1E_MASK; /* Disable C1E */ msr.lo |= (1 << 23); /* Lock it */ wrmsr(MSR_POWER_CTL, msr); } static void enable_lapic_tpr(void) { msr_t msr; msr = rdmsr(MSR_PIC_MSG_CONTROL); msr.lo &= ~(1 << 10); /* Enable APIC TPR updates */ wrmsr(MSR_PIC_MSG_CONTROL, msr); } static void configure_dca_cap(void) { uint32_t feature_flag; msr_t msr; /* Check feature flag in CPUID.(EAX=1):ECX[18]==1 */ feature_flag = cpu_get_feature_flags_ecx(); if (feature_flag & CPUID_DCA) { msr = rdmsr(IA32_PLATFORM_DCA_CAP); msr.lo |= 1; wrmsr(IA32_PLATFORM_DCA_CAP, msr); } } static void set_energy_perf_bias(u8 policy) { msr_t msr; int ecx; /* Determine if energy efficient policy is supported. */ ecx = cpuid_ecx(0x6); if (!(ecx & (1 << 3))) return; /* Energy Policy is bits 3:0 */ msr = rdmsr(IA32_ENERGY_PERF_BIAS); msr.lo &= ~0xf; msr.lo |= policy & 0xf; wrmsr(IA32_ENERGY_PERF_BIAS, msr); printk(BIOS_DEBUG, "cpu: energy policy set to %u\n", policy); } static void configure_c_states(void) { msr_t msr; /* C-state Interrupt Response Latency Control 0 - package C3 latency */ msr.hi = 0; msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_0_LIMIT; wrmsr(MSR_C_STATE_LATENCY_CONTROL_0, msr); /* C-state Interrupt Response Latency Control 1 - package C6/C7 short */ msr.hi = 0; msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_1_LIMIT; wrmsr(MSR_C_STATE_LATENCY_CONTROL_1, msr); /* C-state Interrupt Response Latency Control 2 - package C6/C7 long */ msr.hi = 0; msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_2_LIMIT; wrmsr(MSR_C_STATE_LATENCY_CONTROL_2, msr); /* C-state Interrupt Response Latency Control 3 - package C8 */ msr.hi = 0; msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_3_LIMIT; wrmsr(MSR_C_STATE_LATENCY_CONTROL_3, msr); /* C-state Interrupt Response Latency Control 4 - package C9 */ msr.hi = 0; msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_4_LIMIT; wrmsr(MSR_C_STATE_LATENCY_CONTROL_4, msr); /* C-state Interrupt Response Latency Control 5 - package C10 */ msr.hi = 0; msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_5_LIMIT; wrmsr(MSR_C_STATE_LATENCY_CONTROL_5, msr); } /* * The emulated ACPI timer allows disabling of the ACPI timer * (PM1_TMR) to have no impart on the system. */ static void enable_pm_timer_emulation(void) { msr_t msr; if (!CONFIG_CPU_XTAL_HZ) return; /* * The derived frequency is calculated as follows: * (clock * msr[63:32]) >> 32 = target frequency. * Back solve the multiplier so the 3.579545MHz ACPI timer frequency is used. */ msr.hi = (3579545ULL << 32) / CONFIG_CPU_XTAL_HZ; /* Set PM1 timer IO port and enable */ msr.lo = (EMULATE_DELAY_VALUE << EMULATE_DELAY_OFFSET_VALUE) | EMULATE_PM_TMR_EN | (ACPI_BASE_ADDRESS + PM1_TMR); wrmsr(MSR_EMULATE_PM_TIMER, msr); } /* * Lock AES-NI (MSR_FEATURE_CONFIG) to prevent unintended disabling * as suggested in Intel document 325384-070US. */ static void cpu_lock_aesni(void) { msr_t msr; /* Only run once per core as specified in the MSR datasheet */ if (intel_ht_sibling()) return; msr = rdmsr(MSR_FEATURE_CONFIG); if ((msr.lo & 1) == 0) { msr.lo |= 1; wrmsr(MSR_FEATURE_CONFIG, msr); } } /* All CPUs including BSP will run the following function. */ void soc_core_init(struct device *cpu) { /* Clear out pending MCEs */ /* TODO(adurbin): This should only be done on a cold boot. Also, some * of these banks are core vs package scope. For now every CPU clears * every bank. */ mca_configure(); /* Enable the local CPU apics */ enable_lapic_tpr(); setup_lapic(); /* Configure c-state interrupt response time */ configure_c_states(); /* Configure Enhanced SpeedStep and Thermal Sensors */ configure_misc(); /* Configure Intel Speed Shift */ configure_isst(); /* Lock AES-NI MSR */ cpu_lock_aesni(); /* Enable ACPI Timer Emulation via MSR 0x121 */ enable_pm_timer_emulation(); /* Enable Direct Cache Access */ configure_dca_cap(); /* Set energy policy */ set_energy_perf_bias(ENERGY_POLICY_NORMAL); /* Enable Turbo */ enable_turbo(); /* Configure Core PRMRR for SGX. */ if (CONFIG(SOC_INTEL_COMMON_BLOCK_SGX_ENABLE)) prmrr_core_configure(); } static void per_cpu_smm_trigger(void) { /* Relocate the SMM handler. */ smm_relocate(); } static void vmx_configure(void *unused) { set_feature_ctrl_vmx(); } static void fc_lock_configure(void *unused) { set_feature_ctrl_lock(); } static void post_mp_init(void) { int ret = 0; /* Set Max Ratio */ cpu_set_max_ratio(); /* * Now that all APs have been relocated as well as the BSP let SMIs * start flowing. */ global_smi_enable_no_pwrbtn(); /* Lock down the SMRAM space. */ if (CONFIG(HAVE_SMI_HANDLER)) smm_lock(); ret |= mp_run_on_all_cpus(vmx_configure, NULL); if (CONFIG(SOC_INTEL_COMMON_BLOCK_SGX_ENABLE)) ret |= mp_run_on_all_cpus(sgx_configure, NULL); ret |= mp_run_on_all_cpus(fc_lock_configure, NULL); if (ret) printk(BIOS_CRIT, "CRITICAL ERROR: MP post init failed\n"); } static const struct mp_ops mp_ops = { /* * Skip Pre MP init MTRR programming as MTRRs are mirrored from BSP, * that are set prior to ramstage. * Real MTRRs programming are being done after resource allocation. */ .pre_mp_init = soc_fsp_load, .get_cpu_count = get_cpu_count, .get_smm_info = smm_info, .get_microcode_info = get_microcode_info, .pre_mp_smm_init = smm_initialize, .per_cpu_smm_trigger = per_cpu_smm_trigger, .relocation_handler = smm_relocation_handler, .post_mp_init = post_mp_init, }; void soc_init_cpus(struct bus *cpu_bus) { if (mp_init_with_smm(cpu_bus, &mp_ops)) printk(BIOS_ERR, "MP initialization failure.\n"); /* Thermal throttle activation offset */ configure_tcc_thermal_target(); } int soc_skip_ucode_update(u32 current_patch_id, u32 new_patch_id) { msr_t msr1; msr_t msr2; /* * If PRMRR/SGX is supported the FIT microcode load will set the msr * 0x08b with the Patch revision id one less than the id in the * microcode binary. The PRMRR support is indicated in the MSR * MTRRCAP[12]. If SGX is not enabled, check and avoid reloading the * same microcode during CPU initialization. If SGX is enabled, as * part of SGX BIOS initialization steps, the same microcode needs to * be reloaded after the core PRMRR MSRs are programmed. */ msr1 = rdmsr(MTRR_CAP_MSR); msr2 = rdmsr(MSR_PRMRR_PHYS_BASE); if (msr2.lo && (current_patch_id == new_patch_id - 1)) return 0; else return (msr1.lo & MTRR_CAP_PRMRR) && (current_patch_id == new_patch_id - 1); }