/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* SoC overrides. */ __weak const struct smm_save_state_ops *get_smm_save_state_ops(void) { return &em64t101_smm_ops; } /* Specific SOC SMI handler during ramstage finalize phase */ __weak void smihandler_soc_at_finalize(void) { return; } __weak int smihandler_soc_disable_busmaster(pci_devfn_t dev) { return 1; } /* * Needs to implement the mechanism to know if an illegal attempt * has been made to write to the BIOS area. */ static void smihandler_soc_check_illegal_access( uint32_t tco_sts) { if (!((tco_sts & (1 << 8)) && CONFIG(SPI_FLASH_SMM) && fast_spi_wpd_status())) return; /* * BWE is RW, so the SMI was caused by a * write to BWE, not by a write to the BIOS * * This is the place where we notice someone * is trying to tinker with the BIOS. We are * trying to be nice and just ignore it. A more * resolute answer would be to power down the * box. */ printk(BIOS_DEBUG, "Switching back to RO\n"); fast_spi_enable_wp(); } /* Mainboard overrides. */ __weak void mainboard_smi_gpi_handler( const struct gpi_status *sts) { return; } __weak void mainboard_smi_espi_handler(void) { return; } /* Common Functions */ static void *find_save_state(const struct smm_save_state_ops *save_state_ops, int cmd) { int node; void *state = NULL; uint32_t io_misc_info; uint8_t reg_al; /* Check all nodes looking for the one that issued the IO */ for (node = 0; node < CONFIG_MAX_CPUS; node++) { state = smm_get_save_state(node); io_misc_info = save_state_ops->get_io_misc_info(state); /* Check for Synchronous IO (bit0==1) */ if (!(io_misc_info & (1 << 0))) continue; /* Make sure it was a write (bit4==0) */ if (io_misc_info & (1 << 4)) continue; /* Check for APMC IO port */ if (((io_misc_info >> 16) & 0xff) != APM_CNT) continue; /* Check AL against the requested command */ reg_al = save_state_ops->get_reg(state, RAX); if (reg_al != cmd) continue; break; } return state; } /* Inherited from cpu/x86/smm.h resulting in a different signature */ void southbridge_smi_set_eos(void) { pmc_enable_smi(EOS); } static void busmaster_disable_on_bus(int bus) { int slot, func; unsigned int val; unsigned char hdr; for (slot = 0; slot < 0x20; slot++) { for (func = 0; func < 8; func++) { u16 reg16; pci_devfn_t dev = PCI_DEV(bus, slot, func); if (!smihandler_soc_disable_busmaster(dev)) continue; val = pci_read_config32(dev, PCI_VENDOR_ID); if (val == 0xffffffff || val == 0x00000000 || val == 0x0000ffff || val == 0xffff0000) continue; /* Disable Bus Mastering for this one device */ reg16 = pci_read_config16(dev, PCI_COMMAND); reg16 &= ~PCI_COMMAND_MASTER; pci_write_config16(dev, PCI_COMMAND, reg16); /* If it's not a bridge, move on. */ hdr = pci_read_config8(dev, PCI_HEADER_TYPE); hdr &= 0x7f; if (hdr != PCI_HEADER_TYPE_BRIDGE && hdr != PCI_HEADER_TYPE_CARDBUS) continue; /* * If secondary bus is equal to current bus bypass * the bridge because it's likely unconfigured and * would cause infinite recursion. */ int secbus = pci_read_config8(dev, PCI_SECONDARY_BUS); if (secbus == bus) continue; busmaster_disable_on_bus(secbus); } } } void smihandler_southbridge_sleep( const struct smm_save_state_ops *save_state_ops) { uint32_t reg32; uint8_t slp_typ; /* First, disable further SMIs */ pmc_disable_smi(SLP_SMI_EN); /* Figure out SLP_TYP */ reg32 = inl(ACPI_BASE_ADDRESS + PM1_CNT); printk(BIOS_SPEW, "SMI#: SLP = 0x%08x\n", reg32); slp_typ = acpi_sleep_from_pm1(reg32); /* Do any mainboard sleep handling */ mainboard_smi_sleep(slp_typ); /* Log S3, S4, and S5 entry */ if (slp_typ >= ACPI_S3) elog_gsmi_add_event_byte(ELOG_TYPE_ACPI_ENTER, slp_typ); /* Clear pending GPE events */ pmc_clear_all_gpe_status(); /* Next, do the deed. */ switch (slp_typ) { case ACPI_S0: printk(BIOS_DEBUG, "SMI#: Entering S0 (On)\n"); break; case ACPI_S3: printk(BIOS_DEBUG, "SMI#: Entering S3 (Suspend-To-RAM)\n"); if (CONFIG(SOC_INTEL_COMMON_BLOCK_UART)) gnvs->uior = uart_is_controller_initialized(); /* Invalidate the cache before going to S3 */ wbinvd(); break; case ACPI_S4: printk(BIOS_DEBUG, "SMI#: Entering S4 (Suspend-To-Disk)\n"); break; case ACPI_S5: printk(BIOS_DEBUG, "SMI#: Entering S5 (Soft Power off)\n"); /* Disable all GPE */ pmc_disable_all_gpe(); /* Set which state system will be after power reapplied */ pmc_set_power_failure_state(false); /* also iterates over all bridges on bus 0 */ busmaster_disable_on_bus(0); /* * Some platforms (e.g. Chromebooks) have observed race between * SLP SMI and PWRBTN SMI because of the way these SMIs are * triggered on power button press. Allow adding a delay before * triggering sleep enable for S5, so that power button * interrupt does not result into immediate wake. */ mdelay(CONFIG_SOC_INTEL_COMMON_BLOCK_SMM_S5_DELAY_MS); /* * Ensure any pending power button status bits are cleared as * the system is entering S5 and doesn't want to be woken up * right away from older power button events. */ pmc_clear_pm1_status(); break; default: printk(BIOS_DEBUG, "SMI#: ERROR: SLP_TYP reserved\n"); break; } /* * Write back to the SLP register to cause the originally intended * event again. We need to set BIT13 (SLP_EN) though to make the * sleep happen. */ pmc_enable_pm1_control(SLP_EN); /* Make sure to stop executing code here for S3/S4/S5 */ if (slp_typ >= ACPI_S3) hlt(); /* * In most sleep states, the code flow of this function ends at * the line above. However, if we entered sleep state S1 and wake * up again, we will continue to execute code in this function. */ if (pmc_read_pm1_control() & SCI_EN) { /* The OS is not an ACPI OS, so we set the state to S0 */ pmc_disable_pm1_control(SLP_EN | SLP_TYP); } } static void southbridge_smi_gsmi( const struct smm_save_state_ops *save_state_ops) { u8 sub_command, ret; void *io_smi = NULL; uint32_t reg_ebx; io_smi = find_save_state(save_state_ops, APM_CNT_ELOG_GSMI); if (!io_smi) return; /* Command and return value in EAX */ sub_command = (save_state_ops->get_reg(io_smi, RAX) >> 8) & 0xff; /* Parameter buffer in EBX */ reg_ebx = save_state_ops->get_reg(io_smi, RBX); /* drivers/elog/gsmi.c */ ret = gsmi_exec(sub_command, ®_ebx); save_state_ops->set_reg(io_smi, RAX, ret); } static void southbridge_smi_store( const struct smm_save_state_ops *save_state_ops) { u8 sub_command, ret; void *io_smi; uint32_t reg_ebx; io_smi = find_save_state(save_state_ops, APM_CNT_SMMSTORE); if (!io_smi) return; /* Command and return value in EAX */ sub_command = (save_state_ops->get_reg(io_smi, RAX) >> 8) & 0xff; /* Parameter buffer in EBX */ reg_ebx = save_state_ops->get_reg(io_smi, RBX); /* drivers/smmstore/smi.c */ ret = smmstore_exec(sub_command, (void *)(uintptr_t)reg_ebx); save_state_ops->set_reg(io_smi, RAX, ret); } static void finalize(void) { static int finalize_done; if (finalize_done) { printk(BIOS_DEBUG, "SMM already finalized.\n"); return; } finalize_done = 1; if (CONFIG(SPI_FLASH_SMM)) /* Re-init SPI driver to handle locked BAR */ fast_spi_init(); /* Specific SOC SMI handler during ramstage finalize phase */ smihandler_soc_at_finalize(); } void smihandler_southbridge_apmc( const struct smm_save_state_ops *save_state_ops) { uint8_t reg8; reg8 = apm_get_apmc(); switch (reg8) { case APM_CNT_ACPI_DISABLE: pmc_disable_pm1_control(SCI_EN); break; case APM_CNT_ACPI_ENABLE: pmc_enable_pm1_control(SCI_EN); break; case APM_CNT_ELOG_GSMI: if (CONFIG(ELOG_GSMI)) southbridge_smi_gsmi(save_state_ops); break; case APM_CNT_SMMSTORE: if (CONFIG(SMMSTORE)) southbridge_smi_store(save_state_ops); break; case APM_CNT_FINALIZE: finalize(); break; } mainboard_smi_apmc(reg8); } void smihandler_southbridge_pm1( const struct smm_save_state_ops *save_state_ops) { uint16_t pm1_sts = pmc_clear_pm1_status(); u16 pm1_en = pmc_read_pm1_enable(); /* * While OSPM is not active, poweroff immediately * on a power button event. */ if ((pm1_sts & PWRBTN_STS) && (pm1_en & PWRBTN_EN)) { /* power button pressed */ elog_gsmi_add_event(ELOG_TYPE_POWER_BUTTON); pmc_disable_pm1_control(~0); pmc_enable_pm1_control(SLP_EN | (SLP_TYP_S5 << SLP_TYP_SHIFT)); } } void smihandler_southbridge_gpe0( const struct smm_save_state_ops *save_state_ops) { pmc_clear_all_gpe_status(); } void smihandler_southbridge_tco( const struct smm_save_state_ops *save_state_ops) { uint32_t tco_sts = pmc_clear_tco_status(); /* * SPI synchronous SMIs are TCO SMIs, but they do not have a status * bit in the TCO_STS register. Furthermore, the TCO_STS bit in the * SMI_STS register is continually set until the SMI handler clears * the SPI synchronous SMI status bit in the SPI controller. To not * risk missing any other TCO SMIs, do not clear the TCO_STS bit in * this SMI handler invocation. If the TCO_STS bit remains set when * returning from SMM, another SMI immediately happens which clears * the TCO_STS bit and handles any pending events. */ fast_spi_clear_sync_smi_status(); /* Any TCO event? */ if (!tco_sts) return; smihandler_soc_check_illegal_access(tco_sts); if (tco_sts & TCO_TIMEOUT) { /* TIMEOUT */ /* Handle TCO timeout */ printk(BIOS_DEBUG, "TCO Timeout.\n"); } if (tco_sts & (TCO_INTRD_DET << 16)) { /* INTRUDER# assertion */ /* * Handle intrusion event * If we ever get here, probably the case has been opened. */ printk(BIOS_CRIT, "Case intrusion detected.\n"); } } void smihandler_southbridge_periodic( const struct smm_save_state_ops *save_state_ops) { uint32_t reg32; reg32 = pmc_get_smi_en(); /* Are periodic SMIs enabled? */ if ((reg32 & PERIODIC_EN) == 0) return; printk(BIOS_DEBUG, "Periodic SMI.\n"); } void smihandler_southbridge_gpi( const struct smm_save_state_ops *save_state_ops) { struct gpi_status smi_sts; gpi_clear_get_smi_status(&smi_sts); mainboard_smi_gpi_handler(&smi_sts); /* Clear again after mainboard handler */ gpi_clear_get_smi_status(&smi_sts); } void smihandler_southbridge_espi( const struct smm_save_state_ops *save_state_ops) { mainboard_smi_espi_handler(); } void southbridge_smi_handler(void) { int i; uint32_t smi_sts; const struct smm_save_state_ops *save_state_ops; /* * We need to clear the SMI status registers, or we won't see what's * happening in the following calls. */ smi_sts = pmc_clear_smi_status(); /* * When the SCI_EN bit is set, PM1 and GPE0 events will trigger a SCI * instead of a SMI#. However, SMI_STS bits PM1_STS and GPE0_STS can * still be set. Therefore, when SCI_EN is set, ignore PM1 and GPE0 * events in the SMI# handler, as these events have triggered a SCI. * Do not ignore any other SMI# types, since they cannot cause a SCI. */ if (pmc_read_pm1_control() & SCI_EN) smi_sts &= ~(1 << PM1_STS_BIT | 1 << GPE0_STS_BIT); if (!smi_sts) return; save_state_ops = get_smm_save_state_ops(); /* Call SMI sub handler for each of the status bits */ for (i = 0; i < ARRAY_SIZE(southbridge_smi); i++) { if (!(smi_sts & (1 << i))) continue; if (southbridge_smi[i] != NULL) { southbridge_smi[i](save_state_ops); } else { printk(BIOS_DEBUG, "SMI_STS[%d] occurred, but no " "handler available.\n", i); } } } static uint32_t em64t100_smm_save_state_get_io_misc_info(void *state) { em64t100_smm_state_save_area_t *smm_state = state; return smm_state->io_misc_info; } static uint64_t em64t100_smm_save_state_get_reg(void *state, enum smm_reg reg) { uintptr_t value = 0; em64t100_smm_state_save_area_t *smm_state = state; switch (reg) { case RAX: value = smm_state->rax; break; case RBX: value = smm_state->rbx; break; case RCX: value = smm_state->rcx; break; case RDX: value = smm_state->rdx; break; default: break; } return value; } static void em64t100_smm_save_state_set_reg(void *state, enum smm_reg reg, uint64_t val) { em64t100_smm_state_save_area_t *smm_state = state; switch (reg) { case RAX: smm_state->rax = val; break; case RBX: smm_state->rbx = val; break; case RCX: smm_state->rcx = val; break; case RDX: smm_state->rdx = val; break; default: break; } } static uint32_t em64t101_smm_save_state_get_io_misc_info(void *state) { em64t101_smm_state_save_area_t *smm_state = state; return smm_state->io_misc_info; } static uint64_t em64t101_smm_save_state_get_reg(void *state, enum smm_reg reg) { uintptr_t value = 0; em64t101_smm_state_save_area_t *smm_state = state; switch (reg) { case RAX: value = smm_state->rax; break; case RBX: value = smm_state->rbx; break; case RCX: value = smm_state->rcx; break; case RDX: value = smm_state->rdx; break; default: break; } return value; } static void em64t101_smm_save_state_set_reg(void *state, enum smm_reg reg, uint64_t val) { em64t101_smm_state_save_area_t *smm_state = state; switch (reg) { case RAX: smm_state->rax = val; break; case RBX: smm_state->rbx = val; break; case RCX: smm_state->rcx = val; break; case RDX: smm_state->rdx = val; break; default: break; } } const struct smm_save_state_ops em64t100_smm_ops = { .get_io_misc_info = em64t100_smm_save_state_get_io_misc_info, .get_reg = em64t100_smm_save_state_get_reg, .set_reg = em64t100_smm_save_state_set_reg, }; const struct smm_save_state_ops em64t101_smm_ops = { .get_io_misc_info = em64t101_smm_save_state_get_io_misc_info, .get_reg = em64t101_smm_save_state_get_reg, .set_reg = em64t101_smm_save_state_set_reg, };