/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PMC_IPC_BIOS_RST_COMPLETE 0xd0 #define PMC_IPC_BIOS_RST_SUBID_PCI_ENUM_DONE 0 #define PMC_IPC_BIOS_RST_CMPL_STS_PCI_ENUM BIT(0) /* IPC command for accessing SoC registers */ #define PMC_IPC_CMD_SOC_REG_ACC 0xAA #define PMC_IPC_CMD_SUBCMD_SOC_REG_RD 0x00 #define PMC_IPC_CMD_REGID_SOC_QDF 0x03 static struct chipset_power_state power_state; /* List of Minimum Assertion durations in microseconds */ enum min_assert_dur { MinAssertDur0s = 0, MinAssertDur60us = 60, MinAssertDur1ms = 1000, MinAssertDur50ms = 50000, MinAssertDur98ms = 98000, MinAssertDur500ms = 500000, MinAssertDur1s = 1000000, MinAssertDur2s = 2000000, MinAssertDur3s = 3000000, MinAssertDur4s = 4000000, }; /* Signal Assertion duration values */ struct cfg_assert_dur { /* Minimum assertion duration of SLP_A signal */ enum min_assert_dur slp_a; /* Minimum assertion duration of SLP_4 signal */ enum min_assert_dur slp_s4; /* Minimum assertion duration of SLP_3 signal */ enum min_assert_dur slp_s3; /* PCH PM Power Cycle duration */ enum min_assert_dur pm_pwr_cyc_dur; }; /* Default value of PchPmPwrCycDur */ #define PCH_PM_PWR_CYC_DUR 0 struct chipset_power_state *pmc_get_power_state(void) { struct chipset_power_state *ptr = NULL; if (ENV_HAS_CBMEM) ptr = acpi_get_pm_state(); /* cbmem is online but ptr is not populated yet */ if (ptr == NULL && !(ENV_RAMSTAGE || ENV_POSTCAR)) return &power_state; return ptr; } static void migrate_power_state(int is_recovery) { struct chipset_power_state *ps_cbmem; ps_cbmem = cbmem_add(CBMEM_ID_POWER_STATE, sizeof(*ps_cbmem)); if (ps_cbmem == NULL) { printk(BIOS_DEBUG, "Not adding power state to cbmem!\n"); return; } memcpy(ps_cbmem, &power_state, sizeof(*ps_cbmem)); } CBMEM_CREATION_HOOK(migrate_power_state); static void print_num_status_bits(int num_bits, uint32_t status, const char *const bit_names[]) { int i; if (!status) return; for (i = num_bits - 1; i >= 0; i--) { if (status & (1 << i)) { if (bit_names[i]) printk(BIOS_DEBUG, "%s ", bit_names[i]); else printk(BIOS_DEBUG, "BIT%d ", i); } } } __weak uint32_t soc_get_smi_status(uint32_t generic_sts) { return generic_sts; } int acpi_get_sleep_type(void) { struct chipset_power_state *ps; int prev_sleep_state = ACPI_S0; ps = pmc_get_power_state(); if (ps) prev_sleep_state = ps->prev_sleep_state; return prev_sleep_state; } static uint32_t pmc_reset_smi_status(void) { uint32_t smi_sts = inl(ACPI_BASE_ADDRESS + SMI_STS); outl(smi_sts, ACPI_BASE_ADDRESS + SMI_STS); return soc_get_smi_status(smi_sts); } static uint32_t print_smi_status(uint32_t smi_sts) { size_t array_size; const char *const *smi_arr; if (!smi_sts) return 0; printk(BIOS_DEBUG, "SMI_STS: "); smi_arr = soc_smi_sts_array(&array_size); print_num_status_bits(array_size, smi_sts, smi_arr); printk(BIOS_DEBUG, "\n"); return smi_sts; } /* * Update supplied events in PM1_EN register. This does not disable any already * set events. */ void pmc_update_pm1_enable(u16 events) { u16 pm1_en = pmc_read_pm1_enable(); pm1_en |= events; pmc_enable_pm1(pm1_en); } /* Read events set in PM1_EN register. */ uint16_t pmc_read_pm1_enable(void) { return inw(ACPI_BASE_ADDRESS + PM1_EN); } uint32_t pmc_clear_smi_status(void) { uint32_t sts = pmc_reset_smi_status(); return print_smi_status(sts); } uint32_t pmc_get_smi_en(void) { return inl(ACPI_BASE_ADDRESS + SMI_EN); } void pmc_enable_smi(uint32_t mask) { uint32_t smi_en = inl(ACPI_BASE_ADDRESS + SMI_EN); smi_en |= mask; outl(smi_en, ACPI_BASE_ADDRESS + SMI_EN); } void pmc_disable_smi(uint32_t mask) { uint32_t smi_en = inl(ACPI_BASE_ADDRESS + SMI_EN); smi_en &= ~mask; outl(smi_en, ACPI_BASE_ADDRESS + SMI_EN); } /* PM1 */ void pmc_enable_pm1(uint16_t events) { outw(events, ACPI_BASE_ADDRESS + PM1_EN); } uint32_t pmc_read_pm1_control(void) { return inl(ACPI_BASE_ADDRESS + PM1_CNT); } void pmc_write_pm1_control(uint32_t pm1_cnt) { outl(pm1_cnt, ACPI_BASE_ADDRESS + PM1_CNT); } void pmc_enable_pm1_control(uint32_t mask) { uint32_t pm1_cnt = pmc_read_pm1_control(); pm1_cnt |= mask; pmc_write_pm1_control(pm1_cnt); } void pmc_disable_pm1_control(uint32_t mask) { uint32_t pm1_cnt = pmc_read_pm1_control(); pm1_cnt &= ~mask; pmc_write_pm1_control(pm1_cnt); } static uint16_t reset_pm1_status(void) { uint16_t pm1_sts = inw(ACPI_BASE_ADDRESS + PM1_STS); outw(pm1_sts, ACPI_BASE_ADDRESS + PM1_STS); return pm1_sts; } static uint16_t print_pm1_status(uint16_t pm1_sts) { static const char *const pm1_sts_bits[] = { [0] = "TMROF", [5] = "GBL", [8] = "PWRBTN", [10] = "RTC", [11] = "PRBTNOR", [13] = "USB", [14] = "PCIEXPWAK", [15] = "WAK", }; if (!pm1_sts) return 0; printk(BIOS_DEBUG, "PM1_STS: "); print_num_status_bits(ARRAY_SIZE(pm1_sts_bits), pm1_sts, pm1_sts_bits); printk(BIOS_DEBUG, "\n"); return pm1_sts; } uint16_t pmc_clear_pm1_status(void) { return print_pm1_status(reset_pm1_status()); } /* TCO */ static uint32_t print_tco_status(uint32_t tco_sts) { size_t array_size; const char *const *tco_arr; if (!tco_sts) return 0; printk(BIOS_DEBUG, "TCO_STS: "); tco_arr = soc_tco_sts_array(&array_size); print_num_status_bits(array_size, tco_sts, tco_arr); printk(BIOS_DEBUG, "\n"); return tco_sts; } uint32_t pmc_clear_tco_status(void) { return print_tco_status(tco_reset_status()); } /* GPE */ static void pmc_enable_gpe(int gpe, uint32_t mask) { uint32_t gpe0_en = inl(ACPI_BASE_ADDRESS + GPE0_EN(gpe)); gpe0_en |= mask; outl(gpe0_en, ACPI_BASE_ADDRESS + GPE0_EN(gpe)); } static void pmc_disable_gpe(int gpe, uint32_t mask) { uint32_t gpe0_en = inl(ACPI_BASE_ADDRESS + GPE0_EN(gpe)); gpe0_en &= ~mask; outl(gpe0_en, ACPI_BASE_ADDRESS + GPE0_EN(gpe)); } void pmc_enable_std_gpe(uint32_t mask) { pmc_enable_gpe(GPE_STD, mask); } void pmc_disable_std_gpe(uint32_t mask) { pmc_disable_gpe(GPE_STD, mask); } void pmc_disable_all_gpe(void) { int i; for (i = 0; i < GPE0_REG_MAX; i++) pmc_disable_gpe(i, ~0); } /* Clear the gpio gpe0 status bits in ACPI registers */ static void pmc_clear_gpi_gpe_status(void) { int i; for (i = 0; i < GPE0_REG_MAX; i++) { /* This is reserved GPE block and specific to chipset */ if (i == GPE_STD) continue; uint32_t gpe_sts = inl(ACPI_BASE_ADDRESS + GPE0_STS(i)); outl(gpe_sts, ACPI_BASE_ADDRESS + GPE0_STS(i)); } } static uint32_t reset_std_gpe_status(void) { uint32_t gpe_sts = inl(ACPI_BASE_ADDRESS + GPE0_STS(GPE_STD)); outl(gpe_sts, ACPI_BASE_ADDRESS + GPE0_STS(GPE_STD)); return gpe_sts; } static uint32_t print_std_gpe_sts(uint32_t gpe_sts) { size_t array_size; const char *const *sts_arr; if (!gpe_sts) return gpe_sts; printk(BIOS_DEBUG, "GPE0 STD STS: "); sts_arr = soc_std_gpe_sts_array(&array_size); print_num_status_bits(array_size, gpe_sts, sts_arr); printk(BIOS_DEBUG, "\n"); return gpe_sts; } static void pmc_clear_std_gpe_status(void) { print_std_gpe_sts(reset_std_gpe_status()); } void pmc_clear_all_gpe_status(void) { pmc_clear_std_gpe_status(); pmc_clear_gpi_gpe_status(); } __weak void soc_clear_pm_registers(uintptr_t pmc_bar) { } void pmc_or_mmio32(uint32_t offset, uint32_t ormask) { uint32_t reg; uintptr_t pmc_bar; pmc_bar = soc_read_pmc_base(); reg = read32p(pmc_bar + offset); reg |= ormask; write32p(pmc_bar + offset, reg); } void pmc_clear_prsts(void) { uint32_t prsts; uintptr_t pmc_bar; /* Read PMC base address from soc */ pmc_bar = soc_read_pmc_base(); prsts = read32p(pmc_bar + PRSTS); write32p(pmc_bar + PRSTS, prsts); soc_clear_pm_registers(pmc_bar); } __weak int soc_prev_sleep_state(const struct chipset_power_state *ps, int prev_sleep_state) { return prev_sleep_state; } /* * Returns prev_sleep_state and also prints all power management registers. * Calls soc_prev_sleep_state which may be implemented by SOC. */ static int pmc_prev_sleep_state(const struct chipset_power_state *ps) { /* Default to S0. */ int prev_sleep_state = ACPI_S0; if (ps->pm1_sts & WAK_STS) { switch (acpi_sleep_from_pm1(ps->pm1_cnt)) { case ACPI_S3: if (CONFIG(HAVE_ACPI_RESUME)) prev_sleep_state = ACPI_S3; break; case ACPI_S4: prev_sleep_state = ACPI_S4; break; case ACPI_S5: prev_sleep_state = ACPI_S5; break; } /* Clear SLP_TYP. */ pmc_write_pm1_control(ps->pm1_cnt & ~(SLP_TYP)); } prev_sleep_state = soc_prev_sleep_state(ps, prev_sleep_state); /* Clear PMC PMCON_x register power failure status bits. */ pmc_clear_pmcon_pwr_failure_sts(); return prev_sleep_state; } void pmc_fill_pm_reg_info(struct chipset_power_state *ps) { int i; memset(ps, 0, sizeof(*ps)); ps->pm1_sts = inw(ACPI_BASE_ADDRESS + PM1_STS); ps->pm1_en = inw(ACPI_BASE_ADDRESS + PM1_EN); ps->pm1_cnt = pmc_read_pm1_control(); printk(BIOS_DEBUG, "pm1_sts: %04x pm1_en: %04x pm1_cnt: %08x\n", ps->pm1_sts, ps->pm1_en, ps->pm1_cnt); for (i = 0; i < GPE0_REG_MAX; i++) { ps->gpe0_sts[i] = inl(ACPI_BASE_ADDRESS + GPE0_STS(i)); ps->gpe0_en[i] = inl(ACPI_BASE_ADDRESS + GPE0_EN(i)); printk(BIOS_DEBUG, "gpe0_sts[%d]: %08x gpe0_en[%d]: %08x\n", i, ps->gpe0_sts[i], i, ps->gpe0_en[i]); } soc_fill_power_state(ps); } /* Reads and prints ACPI specific PM registers */ int pmc_fill_power_state(struct chipset_power_state *ps) { /* Define the sleep state string */ static const char * const acpi_sleep_states[] = { [ACPI_S0] = "S0", [ACPI_S1] = "S1", [ACPI_S3] = "S3", [ACPI_S4] = "S4", [ACPI_S5] = "S5", }; pmc_fill_pm_reg_info(ps); ps->prev_sleep_state = pmc_prev_sleep_state(ps); if (ps->prev_sleep_state < ARRAY_SIZE(acpi_sleep_states) && acpi_sleep_states[ps->prev_sleep_state] != NULL) printk(BIOS_DEBUG, "prev_sleep_state %d (%s)\n", ps->prev_sleep_state, acpi_sleep_states[ps->prev_sleep_state]); else printk(BIOS_DEBUG, "prev_sleep_state %d (unknown state)\n", ps->prev_sleep_state); return ps->prev_sleep_state; } #if CONFIG(PMC_GLOBAL_RESET_ENABLE_LOCK) void pmc_global_reset_disable_and_lock(void) { uint32_t *etr = soc_pmc_etr_addr(); uint32_t reg; reg = read32(etr); reg = (reg & ~CF9_GLB_RST) | CF9_LOCK; write32(etr, reg); } void pmc_global_reset_enable(bool enable) { uint32_t *etr = soc_pmc_etr_addr(); uint32_t reg; reg = read32(etr); reg = enable ? reg | CF9_GLB_RST : reg & ~CF9_GLB_RST; write32(etr, reg); } #endif // CONFIG_PMC_GLOBAL_RESET_ENABLE_LOCK int platform_is_resuming(void) { /* Read power state from PMC data structure */ if (ENV_RAMSTAGE) return acpi_get_sleep_type() == ACPI_S3; /* Read power state from PMC ABASE */ if (!(inw(ACPI_BASE_ADDRESS + PM1_STS) & WAK_STS)) return 0; return acpi_sleep_from_pm1(pmc_read_pm1_control()) == ACPI_S3; } /* Read and clear GPE status (defined in acpi/acpi.h) */ int acpi_get_gpe(int gpe) { int bank; uint32_t mask, sts; struct stopwatch sw; int rc = 0; if (gpe < 0 || gpe > GPE_MAX) return -1; bank = gpe / 32; mask = 1 << (gpe % 32); /* Wait up to 1ms for GPE status to clear */ stopwatch_init_msecs_expire(&sw, 1); do { if (stopwatch_expired(&sw)) return rc; sts = inl(ACPI_BASE_ADDRESS + GPE0_STS(bank)); if (sts & mask) { outl(mask, ACPI_BASE_ADDRESS + GPE0_STS(bank)); rc = 1; } } while (sts & mask); return rc; } /* * The PM1 control is set to S5 when vboot requests a reboot because the power * state code above may not have collected its data yet. Therefore, set it to * S5 when vboot requests a reboot. That's necessary if vboot fails in the * resume path and requests a reboot. This prevents a reboot loop where the * error is continually hit on the failing vboot resume path. */ void vboot_platform_prepare_reboot(void) { uint32_t pm1_cnt; pm1_cnt = (pmc_read_pm1_control() & ~(SLP_TYP)) | (SLP_TYP_S5 << SLP_TYP_SHIFT); pmc_write_pm1_control(pm1_cnt); } void poweroff(void) { pmc_enable_pm1_control(SLP_EN | (SLP_TYP_S5 << SLP_TYP_SHIFT)); /* * Setting SLP_TYP_S5 in PM1 triggers SLP_SMI, which is handled by SMM * to transition to S5 state. If halt is called in SMM, then it prevents * the SMI handler from being triggered and system never enters S5. */ if (!ENV_SMM) halt(); } void pmc_gpe_init(void) { uint32_t gpio_cfg = 0; uint32_t gpio_cfg_reg; uint8_t dw0 = 0, dw1 = 0, dw2 = 0; /* Read PMC base address from soc. This is implemented in soc */ uintptr_t pmc_bar = soc_read_pmc_base(); /* * Get the dwX values for pmc gpe settings. */ soc_get_gpi_gpe_configs(&dw0, &dw1, &dw2); const uint32_t gpio_cfg_mask = (GPE0_DWX_MASK << GPE0_DW_SHIFT(0)) | (GPE0_DWX_MASK << GPE0_DW_SHIFT(1)) | (GPE0_DWX_MASK << GPE0_DW_SHIFT(2)); /* Making sure that bad values don't bleed into the other fields */ dw0 &= GPE0_DWX_MASK; dw1 &= GPE0_DWX_MASK; dw2 &= GPE0_DWX_MASK; /* * Route the GPIOs to the GPE0 block. Determine that all values * are different, and if they aren't use the reset values. */ if (dw0 == dw1 || dw1 == dw2) { printk(BIOS_INFO, "PMC: Using default GPE route.\n"); gpio_cfg = read32p(pmc_bar + GPIO_GPE_CFG); dw0 = (gpio_cfg >> GPE0_DW_SHIFT(0)) & GPE0_DWX_MASK; dw1 = (gpio_cfg >> GPE0_DW_SHIFT(1)) & GPE0_DWX_MASK; dw2 = (gpio_cfg >> GPE0_DW_SHIFT(2)) & GPE0_DWX_MASK; } else { gpio_cfg |= (uint32_t)dw0 << GPE0_DW_SHIFT(0); gpio_cfg |= (uint32_t)dw1 << GPE0_DW_SHIFT(1); gpio_cfg |= (uint32_t)dw2 << GPE0_DW_SHIFT(2); } gpio_cfg_reg = read32p(pmc_bar + GPIO_GPE_CFG) & ~gpio_cfg_mask; gpio_cfg_reg |= gpio_cfg & gpio_cfg_mask; write32p(pmc_bar + GPIO_GPE_CFG, gpio_cfg_reg); /* Set the routes in the GPIO communities as well. */ gpio_route_gpe(dw0, dw1, dw2); } static void pmc_clear_pmcon_pwr_failure_sts_mmio(void) { uint8_t *addr = pmc_mmio_regs(); /* * Clear PMC GEN_PMCON_A register power failure status bits: * SUS_PWR_FLR, PWR_FLR bits * while retaining MS4V write-1-to-clear bit * * Note: clearing `GBL_RST_STS` bit earlier than FSP-M/MRC having an adverse effect * on the PMC sleep type register which results in calculating wrong * `prev_sleep_state` post a global reset, hence, just clearing the power failure * status bits rather than clearing the complete PMC PMCON_A register. */ clrbits32((addr + GEN_PMCON_A), (MS4V | GBL_RST_STS)); } static void pmc_clear_pmcon_pwr_failure_sts_pci(void) { #if defined(__SIMPLE_DEVICE__) pci_devfn_t dev = PCI_DEV(0, PCI_SLOT(PCH_DEVFN_PMC), PCI_FUNC(PCH_DEVFN_PMC)); #else struct device *dev = pcidev_path_on_root(PCH_DEVFN_PMC); if (!dev) return; #endif pci_or_config32(dev, GEN_PMCON_B, (SUS_PWR_FLR | PWR_FLR)); } /* * Clear PMC GEN_PMCON_X register power failure status bits: * SUS_PWR_FLR, PWR_FLR bits (keep the other bits intact) */ void pmc_clear_pmcon_pwr_failure_sts(void) { if (CONFIG(SOC_INTEL_MEM_MAPPED_PM_CONFIGURATION)) pmc_clear_pmcon_pwr_failure_sts_mmio(); else pmc_clear_pmcon_pwr_failure_sts_pci(); } #if ENV_RAMSTAGE static void pmc_clear_pmcon_sts_mmio(void) { uint8_t *addr = pmc_mmio_regs(); clrbits32((addr + GEN_PMCON_A), MS4V); } static void pmc_clear_pmcon_sts_pci(void) { struct device *dev = pcidev_path_on_root(PCH_DEVFN_PMC); if (!dev) return; pci_and_config32(dev, GEN_PMCON_A, ~MS4V); } /* * Clear PMC GEN_PMCON_A register status bits: * SUS_PWR_FLR, GBL_RST_STS, HOST_RST_STS, PWR_FLR bits * while retaining MS4V write-1-to-clear bit */ void pmc_clear_pmcon_sts(void) { /* * Accessing PMC GEN_PMCON_A register differs between different Intel chipsets. * Typically, there are two possible ways to perform GEN_PMCON_A register programming * (like `pmc_clear_pmcon_sts()`) as: * 1. Using PCI configuration space when GEN_PMCON_A is a PCI configuration register. * 2. Using MMIO access when GEN_PMCON_A is a memory mapped register. */ if (CONFIG(SOC_INTEL_MEM_MAPPED_PM_CONFIGURATION)) pmc_clear_pmcon_sts_mmio(); else pmc_clear_pmcon_sts_pci(); } #endif void pmc_set_power_failure_state(const bool target_on) { const unsigned int state = get_uint_option("power_on_after_fail", CONFIG_MAINBOARD_POWER_FAILURE_STATE); /* * On the shutdown path (target_on == false), we only need to * update the register for MAINBOARD_POWER_STATE_PREVIOUS. For * all other cases, we don't write the register to avoid clob- * bering the value set on the boot path. This is necessary, * for instance, when we can't access the option backend in SMM. */ switch (state) { case MAINBOARD_POWER_STATE_OFF: if (!target_on) break; printk(BIOS_INFO, "Set power off after power failure.\n"); pmc_soc_set_afterg3_en(false); break; case MAINBOARD_POWER_STATE_ON: if (!target_on) break; printk(BIOS_INFO, "Set power on after power failure.\n"); pmc_soc_set_afterg3_en(true); break; case MAINBOARD_POWER_STATE_PREVIOUS: printk(BIOS_INFO, "Keep power state after power failure.\n"); pmc_soc_set_afterg3_en(target_on); break; default: printk(BIOS_WARNING, "Unknown power-failure state: %d\n", state); break; } } /* This function returns the highest assertion duration of the SLP_Sx assertion widths */ static enum min_assert_dur get_high_assert_width(const struct cfg_assert_dur *cfg_assert_dur) { enum min_assert_dur max_assert_dur = cfg_assert_dur->slp_s4; if (max_assert_dur < cfg_assert_dur->slp_s3) max_assert_dur = cfg_assert_dur->slp_s3; if (max_assert_dur < cfg_assert_dur->slp_a) max_assert_dur = cfg_assert_dur->slp_a; return max_assert_dur; } /* This function converts assertion durations from register-encoded to microseconds */ static void get_min_assert_dur(uint8_t slp_s4_min_assert, uint8_t slp_s3_min_assert, uint8_t slp_a_min_assert, uint8_t pm_pwr_cyc_dur, struct cfg_assert_dur *cfg_assert_dur) { /* * Ensure slp_x_dur_list[] elements in the devicetree config are in sync with * FSP encoded values. */ /* slp_s4_assert_dur_list : 1s, 1s(default), 2s, 3s, 4s */ const enum min_assert_dur slp_s4_assert_dur_list[] = { MinAssertDur1s, MinAssertDur1s, MinAssertDur2s, MinAssertDur3s, MinAssertDur4s }; /* slp_s3_assert_dur_list: 50ms, 60us, 1ms, 50ms (Default), 2s */ const enum min_assert_dur slp_s3_assert_dur_list[] = { MinAssertDur50ms, MinAssertDur60us, MinAssertDur1ms, MinAssertDur50ms, MinAssertDur2s }; /* slp_a_assert_dur_list: 2s, 0s, 4s, 98ms, 2s(Default) */ const enum min_assert_dur slp_a_assert_dur_list[] = { MinAssertDur2s, MinAssertDur0s, MinAssertDur4s, MinAssertDur98ms, MinAssertDur2s }; /* pm_pwr_cyc_dur_list: 4s(Default), 1s, 2s, 3s, 4s */ const enum min_assert_dur pm_pwr_cyc_dur_list[] = { MinAssertDur4s, MinAssertDur1s, MinAssertDur2s, MinAssertDur3s, MinAssertDur4s }; /* Get signal assertion width */ if (slp_s4_min_assert < ARRAY_SIZE(slp_s4_assert_dur_list)) cfg_assert_dur->slp_s4 = slp_s4_assert_dur_list[slp_s4_min_assert]; if (slp_s3_min_assert < ARRAY_SIZE(slp_s3_assert_dur_list)) cfg_assert_dur->slp_s3 = slp_s3_assert_dur_list[slp_s3_min_assert]; if (slp_a_min_assert < ARRAY_SIZE(slp_a_assert_dur_list)) cfg_assert_dur->slp_a = slp_a_assert_dur_list[slp_a_min_assert]; if (pm_pwr_cyc_dur < ARRAY_SIZE(pm_pwr_cyc_dur_list)) cfg_assert_dur->pm_pwr_cyc_dur = pm_pwr_cyc_dur_list[pm_pwr_cyc_dur]; } /* * This function ensures that the duration programmed in the PchPmPwrCycDur will never be * smaller than the SLP_Sx assertion widths. * If the pm_pwr_cyc_dur is less than any of the SLP_Sx assertion widths then it returns the * default value PCH_PM_PWR_CYC_DUR. */ uint8_t get_pm_pwr_cyc_dur(uint8_t slp_s4_min_assert, uint8_t slp_s3_min_assert, uint8_t slp_a_min_assert, uint8_t pm_pwr_cyc_dur) { /* Set default values for the minimum assertion duration */ struct cfg_assert_dur cfg_assert_dur = { .slp_a = MinAssertDur2s, .slp_s4 = MinAssertDur1s, .slp_s3 = MinAssertDur50ms, .pm_pwr_cyc_dur = MinAssertDur4s }; enum min_assert_dur high_assert_width; /* Convert assertion durations from register-encoded to microseconds */ get_min_assert_dur(slp_s4_min_assert, slp_s3_min_assert, slp_a_min_assert, pm_pwr_cyc_dur, &cfg_assert_dur); /* Get the highest assertion duration among PCH EDS specified signals for pwr_cyc_dur */ high_assert_width = get_high_assert_width(&cfg_assert_dur); if (cfg_assert_dur.pm_pwr_cyc_dur >= high_assert_width) return pm_pwr_cyc_dur; printk(BIOS_DEBUG, "Set PmPwrCycDur to 4s as configured PmPwrCycDur (%d) violates PCH EDS " "spec\n", pm_pwr_cyc_dur); return PCH_PM_PWR_CYC_DUR; } void pmc_set_acpi_mode(void) { if (!CONFIG(NO_SMM) && !acpi_is_wakeup_s3()) { apm_control(APM_CNT_ACPI_DISABLE); } } enum pch_pmc_xtal pmc_get_xtal_freq(void) { if (!CONFIG(SOC_INTEL_COMMON_BLOCK_PMC_EPOC)) dead_code(); uint32_t xtal_freq = 0; const uint32_t epoc = read32p(soc_read_pmc_base() + PCH_PMC_EPOC); /* XTAL frequency in bits 21, 20, 17 */ xtal_freq |= !!(epoc & (1 << 21)) << 2; xtal_freq |= !!(epoc & (1 << 20)) << 1; xtal_freq |= !!(epoc & (1 << 17)) << 0; switch (xtal_freq) { case 0: return XTAL_24_MHZ; case 1: return XTAL_19_2_MHZ; case 2: return XTAL_38_4_MHZ; default: printk(BIOS_ERR, "Unknown EPOC XTAL frequency setting %u\n", xtal_freq); return XTAL_UNKNOWN_FREQ; } } void pmc_send_bios_reset_pci_enum_done(void) { struct pmc_ipc_buffer req = { 0 }; struct pmc_ipc_buffer rsp; uint32_t cmd; req.buf[0] = PMC_IPC_BIOS_RST_CMPL_STS_PCI_ENUM; cmd = pmc_make_ipc_cmd(PMC_IPC_BIOS_RST_COMPLETE, PMC_IPC_BIOS_RST_SUBID_PCI_ENUM_DONE, 0); if (pmc_send_ipc_cmd(cmd, &req, &rsp) != CB_SUCCESS) printk(BIOS_ERR, "PMC: Failed sending PCI Enumeration Done Command\n"); } /* * This function reads and prints SoC QDF information using PMC interface * if SOC_QDF_DYNAMIC_READ_PMC config is enabled. */ void pmc_dump_soc_qdf_info(void) { struct pmc_ipc_buffer req = { 0 }; struct pmc_ipc_buffer rsp; uint32_t cmd_reg; int r; char qdf_info[5]; if (!CONFIG(SOC_QDF_DYNAMIC_READ_PMC)) return; req.buf[0] = PMC_IPC_CMD_REGID_SOC_QDF; cmd_reg = pmc_make_ipc_cmd(PMC_IPC_CMD_SOC_REG_ACC, PMC_IPC_CMD_SUBCMD_SOC_REG_RD, PMC_IPC_BUF_COUNT); r = pmc_send_ipc_cmd(cmd_reg, &req, &rsp); if (r < 0 || rsp.buf[0] == 0) { printk(BIOS_ERR, "%s: pmc_send_ipc_cmd failed or QDF not available.\n", __func__); return; } qdf_info[0] = ((rsp.buf[0] >> 24) & 0xFF); qdf_info[1] = ((rsp.buf[0] >> 16) & 0xFF); qdf_info[2] = ((rsp.buf[0] >> 8) & 0xFF); qdf_info[3] = (rsp.buf[0] & 0xFF); qdf_info[4] = '\0'; printk(BIOS_INFO, "SoC QDF: %s\n", qdf_info); }