/* SPDX-License-Identifier: GPL-2.0-or-later */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CPUID_6_EAX_ISST (1 << 7) #define ACPI_SCI_IRQ 9 void ioapic_get_sci_pin(u8 *gsi, u8 *irq, u8 *flags) { int sci_irq = ACPI_SCI_IRQ; uint32_t scis; scis = soc_read_sci_irq_select(); scis &= SCI_IRQ_SEL; scis >>= SCI_IRQ_ADJUST; /* Determine how SCI is routed. */ switch (scis) { case SCIS_IRQ9: case SCIS_IRQ10: case SCIS_IRQ11: sci_irq = scis - SCIS_IRQ9 + 9; break; case SCIS_IRQ20: case SCIS_IRQ21: case SCIS_IRQ22: case SCIS_IRQ23: sci_irq = scis - SCIS_IRQ20 + 20; break; default: printk(BIOS_DEBUG, "Invalid SCI route! Defaulting to IRQ%d.\n", sci_irq); break; } *gsi = sci_irq; *irq = (sci_irq < 16) ? sci_irq : ACPI_SCI_IRQ; *flags = MP_IRQ_TRIGGER_LEVEL | soc_madt_sci_irq_polarity(sci_irq); printk(BIOS_DEBUG, "SCI is IRQ %d, GSI %d\n", *irq, *gsi); } static const uintptr_t default_ioapic_bases[] = { IO_APIC_ADDR }; __weak size_t soc_get_ioapic_info(const uintptr_t *ioapic_bases[]) { *ioapic_bases = default_ioapic_bases; return ARRAY_SIZE(default_ioapic_bases); } unsigned long acpi_fill_madt(unsigned long current) { const uintptr_t *ioapic_table; size_t ioapic_entries; /* Local APICs */ if (!CONFIG(ACPI_COMMON_MADT_LAPIC)) current = acpi_create_madt_lapics_with_nmis_hybrid(current); /* IOAPIC */ ioapic_entries = soc_get_ioapic_info(&ioapic_table); /* Default SOC IOAPIC entry */ ASSERT(ioapic_table[0] == IO_APIC_ADDR); for (int i = 1; i < ioapic_entries; i++) current += acpi_create_madt_ioapic_from_hw((void *)current, ioapic_table[i]); return current; } void acpi_fill_fadt(acpi_fadt_t *fadt) { const uint16_t pmbase = ACPI_BASE_ADDRESS; fadt->pm1a_evt_blk = pmbase + PM1_STS; fadt->pm1a_cnt_blk = pmbase + PM1_CNT; fadt->gpe0_blk = pmbase + GPE0_STS(0); fadt->pm1_evt_len = 4; fadt->pm1_cnt_len = 2; /* GPE0 STS/EN pairs each 32 bits wide. */ fadt->gpe0_blk_len = 2 * GPE0_REG_MAX * sizeof(uint32_t); fadt->gpe1_blk = 0; if (CONFIG(SOC_INTEL_COMMON_BLOCK_ACPI_USE_GPE1)) { fadt->gpe1_blk = pmbase + GPE1_STS(0); fadt->gpe1_blk_len = 2 * GPE1_REG_MAX * sizeof(uint32_t); /* * NOTE: gpe1 is after gpe0, which has _STS and _EN register sets. * gpe1_base is the starting bit offset for GPE1. */ fadt->gpe1_base = fadt->gpe0_blk_len / 2 * 8; } fill_fadt_extended_pm_io(fadt); fadt->flags |= ACPI_FADT_WBINVD | ACPI_FADT_C1_SUPPORTED | ACPI_FADT_SLEEP_BUTTON | ACPI_FADT_SEALED_CASE | ACPI_FADT_S4_RTC_WAKE; if (CONFIG(USE_PM_ACPI_TIMER)) fadt->flags |= ACPI_FADT_PLATFORM_CLOCK; } unsigned long southbridge_write_acpi_tables(const struct device *device, unsigned long current, struct acpi_rsdp *rsdp) { if (CONFIG(SOC_INTEL_COMMON_BLOCK_UART)) { current = acpi_write_dbg2_pci_uart(rsdp, current, uart_get_device(), ACPI_ACCESS_SIZE_DWORD_ACCESS); } return acpi_write_hpet(device, current, rsdp); } __weak void acpi_fill_soc_wake(uint32_t *pm1_en, uint32_t *gpe0_en, const struct chipset_power_state *ps) { } /* * Save wake source information for calculating ACPI _SWS values * * @pm1: PM1_STS register with only enabled events set * @gpe0: GPE0_STS registers with only enabled events set * * return the number of registers in the gpe0 array */ int soc_fill_acpi_wake(const struct chipset_power_state *ps, uint32_t *pm1, uint32_t **gpe0) { static uint32_t gpe0_sts[GPE0_REG_MAX]; uint32_t gpe0_en[GPE0_REG_MAX]; uint32_t pm1_en; int i; /* * PM1_EN to check the basic wake events which can happen through * powerbtn or any other wake source like lidopen, key board press etc. */ pm1_en = ps->pm1_en; pm1_en |= WAK_STS | PWRBTN_EN; memcpy(gpe0_en, ps->gpe0_en, sizeof(gpe0_en)); acpi_fill_soc_wake(&pm1_en, gpe0_en, ps); *pm1 = ps->pm1_sts & pm1_en; /* Mask off GPE0 status bits that are not enabled */ *gpe0 = &gpe0_sts[0]; for (i = 0; i < GPE0_REG_MAX; i++) gpe0_sts[i] = ps->gpe0_sts[i] & gpe0_en[i]; return GPE0_REG_MAX; } int common_calculate_power_ratio(int tdp, int p1_ratio, int ratio) { u32 m; u32 power; /* * M = ((1.1 - ((p1_ratio - ratio) * 0.00625)) / 1.1) ^ 2 * * Power = (ratio / p1_ratio) * m * tdp */ m = (110000 - ((p1_ratio - ratio) * 625)) / 11; m = (m * m) / 1000; power = ((ratio * 100000 / p1_ratio) / 100); power *= (m / 100) * (tdp / 1000); power /= 1000; return power; } static void generate_c_state_entries(void) { const acpi_cstate_t *c_state_map; size_t entries; c_state_map = soc_get_cstate_map(&entries); /* Generate C-state tables */ acpigen_write_CST_package(c_state_map, entries); } void generate_p_state_entries(int core, int cores_per_package) { int ratio_min, ratio_max, ratio_turbo, ratio_step; int coord_type, power_max, num_entries; int ratio, power, clock, clock_max; bool turbo; coord_type = cpu_get_coord_type(); ratio_min = cpu_get_min_ratio(); ratio_max = cpu_get_max_ratio(); clock_max = (ratio_max * cpu_get_bus_clock()) / KHz; turbo = (get_turbo_state() == TURBO_ENABLED); /* Calculate CPU TDP in mW */ power_max = cpu_get_power_max(); /* Write _PCT indicating use of FFixedHW */ acpigen_write_empty_PCT(); /* Write _PPC with no limit on supported P-state */ acpigen_write_PPC_NVS(); /* Write PSD indicating configured coordination type */ acpigen_write_PSD_package(core, 1, coord_type); /* Add P-state entries in _PSS table */ acpigen_write_name("_PSS"); /* Determine ratio points */ ratio_step = PSS_RATIO_STEP; do { num_entries = ((ratio_max - ratio_min) / ratio_step) + 1; if (((ratio_max - ratio_min) % ratio_step) > 0) num_entries += 1; if (turbo) num_entries += 1; if (num_entries > PSS_MAX_ENTRIES) ratio_step += 1; } while (num_entries > PSS_MAX_ENTRIES); /* _PSS package count depends on Turbo */ acpigen_write_package(num_entries); /* P[T] is Turbo state if enabled */ if (turbo) { ratio_turbo = cpu_get_max_turbo_ratio(); /* Add entry for Turbo ratio */ acpigen_write_PSS_package(clock_max + 1, /* MHz */ power_max, /* mW */ PSS_LATENCY_TRANSITION,/* lat1 */ PSS_LATENCY_BUSMASTER,/* lat2 */ ratio_turbo << 8, /* control */ ratio_turbo << 8); /* status */ num_entries -= 1; } /* First regular entry is max non-turbo ratio */ acpigen_write_PSS_package(clock_max, /* MHz */ power_max, /* mW */ PSS_LATENCY_TRANSITION,/* lat1 */ PSS_LATENCY_BUSMASTER,/* lat2 */ ratio_max << 8, /* control */ ratio_max << 8); /* status */ num_entries -= 1; /* Generate the remaining entries */ for (ratio = ratio_min + ((num_entries - 1) * ratio_step); ratio >= ratio_min; ratio -= ratio_step) { /* Calculate power at this ratio */ power = common_calculate_power_ratio(power_max, ratio_max, ratio); clock = (ratio * cpu_get_bus_clock()) / KHz; acpigen_write_PSS_package(clock, /* MHz */ power, /* mW */ PSS_LATENCY_TRANSITION,/* lat1 */ PSS_LATENCY_BUSMASTER,/* lat2 */ ratio << 8, /* control */ ratio << 8); /* status */ } /* Fix package length */ acpigen_pop_len(); } __weak acpi_tstate_t *soc_get_tss_table(int *entries) { *entries = 0; return NULL; } void generate_t_state_entries(int core, int cores_per_package) { acpi_tstate_t *soc_tss_table; int entries; soc_tss_table = soc_get_tss_table(&entries); if (entries == 0) return; /* Indicate SW_ALL coordination for T-states */ acpigen_write_TSD_package(core, cores_per_package, SW_ALL); /* Indicate FixedHW so OS will use MSR */ acpigen_write_empty_PTC(); /* Set NVS controlled T-state limit */ acpigen_write_TPC("\\TLVL"); /* Write TSS table for MSR access */ acpigen_write_TSS_package(entries, soc_tss_table); } static void generate_cppc_entries(int core_id) { u32 version = CPPC_VERSION_2; if (CONFIG(SOC_INTEL_COMMON_BLOCK_ACPI_CPU_HYBRID)) version = CPPC_VERSION_3; if (!(CONFIG(SOC_INTEL_COMMON_BLOCK_ACPI_CPPC) && cpuid_eax(6) & CPUID_6_EAX_ISST)) return; /* Generate GCPC package in first logical core */ if (core_id == 0) { struct cppc_config cppc_config; cpu_init_cppc_config(&cppc_config, version); acpigen_write_CPPC_package(&cppc_config); } /* Write _CPC entry for each logical core */ if (CONFIG(SOC_INTEL_COMMON_BLOCK_ACPI_CPU_HYBRID)) acpigen_write_CPPC_hybrid_method(core_id); else acpigen_write_CPPC_method(); } __weak void soc_power_states_generation(int core_id, int cores_per_package) { } static void generate_cpu_entry(int cpu, int core, int cores_per_package) { /* Generate processor \_SB.CPUx */ acpigen_write_processor_device(cpu * cores_per_package + core); /* Generate C-state tables */ generate_c_state_entries(); generate_cppc_entries(core); /* Soc specific power states generation */ soc_power_states_generation(core, cores_per_package); acpigen_write_processor_device_end(); } void generate_cpu_entries(const struct device *device) { int core_id, cpu_id; int totalcores = dev_count_cpu(); unsigned int num_virt; unsigned int num_phys; cpu_read_topology(&num_phys, &num_virt); int numcpus = totalcores / num_virt; printk(BIOS_DEBUG, "Found %d CPU(s) with %d/%d physical/logical core(s) each.\n", numcpus, num_phys, num_virt); for (cpu_id = 0; cpu_id < numcpus; cpu_id++) for (core_id = 0; core_id < num_virt; core_id++) generate_cpu_entry(cpu_id, core_id, num_virt); /* PPKG is usually used for thermal management of the first and only package. */ acpigen_write_processor_package("PPKG", 0, num_virt); /* Add a method to notify processor nodes */ acpigen_write_processor_cnot(num_virt); if (CONFIG(SOC_INTEL_COMMON_BLOCK_SGX_ENABLE)) sgx_fill_ssdt(); } static bool fill_wdat_timeout_entry(acpi_wdat_entry_t *entry) { uint16_t tcobase = tco_get_bar(); if (tcobase == 0) return false; memset((void *)entry, 0, sizeof(acpi_wdat_entry_t)); entry->action = ACPI_WDAT_SET_COUNTDOWN; entry->instruction = ACPI_WDAT_WRITE_COUNTDOWN | ACPI_WDAT_PRESERVE_REGISTER; entry->mask = TCO_TMR_MASK; entry->register_region.space_id = ACPI_ADDRESS_SPACE_IO; entry->register_region.addrl = tcobase + TCO_TMR; entry->register_region.access_size = ACPI_WDAT_ACCESS_SIZE_WORD; return true; } static bool fill_wdat_boot_status_entry(acpi_wdat_entry_t *entry, uint8_t action, uint8_t instruction, uint32_t value) { uint16_t tcobase = tco_get_bar(); if (tcobase == 0) return false; memset((void *)entry, 0, sizeof(acpi_wdat_entry_t)); entry->action = action; entry->instruction = instruction; entry->value = value; entry->mask = TCO2_STS_SECOND_TO; entry->register_region.space_id = ACPI_ADDRESS_SPACE_IO; entry->register_region.addrl = tcobase + TCO_MESSAGE1; entry->register_region.access_size = ACPI_WDAT_ACCESS_SIZE_BYTE; return true; } static bool fill_wdat_run_state_entry(acpi_wdat_entry_t *entry, uint8_t action, uint8_t instruction, uint32_t value) { uint16_t tcobase = tco_get_bar(); if (tcobase == 0) return false; memset((void *)entry, 0, sizeof(acpi_wdat_entry_t)); entry->action = action; entry->instruction = instruction; entry->value = value; entry->mask = TCO1_TMR_HLT; entry->register_region.space_id = ACPI_ADDRESS_SPACE_IO; entry->register_region.addrl = tcobase + TCO1_CNT; entry->register_region.access_size = ACPI_WDAT_ACCESS_SIZE_WORD; return true; } static bool fill_wdat_ping_entry(acpi_wdat_entry_t *entry) { uint16_t tcobase = tco_get_bar(); if (tcobase == 0) return false; memset((void *)entry, 0, sizeof(acpi_wdat_entry_t)); entry->action = ACPI_WDAT_RESET; entry->instruction = ACPI_WDAT_WRITE_VALUE; entry->value = 0x01; entry->mask = 0x01; entry->register_region.space_id = ACPI_ADDRESS_SPACE_IO; entry->register_region.addrl = tcobase + TCO_RLD; entry->register_region.access_size = ACPI_WDAT_ACCESS_SIZE_WORD; return true; } unsigned long acpi_soc_fill_wdat(acpi_wdat_t *wdat, unsigned long current) { if (!wdat) return current; uint16_t tcobase = tco_get_bar(); if (tcobase == 0) goto out_err; wdat->pci_segment = 0xff; wdat->pci_bus = 0xff; wdat->pci_device = 0xff; wdat->pci_function = 0xff; wdat->timer_period = tco_get_timer_period(); wdat->min_count = tco_get_timer_min_value(); wdat->max_count = tco_get_timer_max_value(); wdat->flags = ACPI_WDAT_FLAG_ENABLED; wdat->entries = 0; acpi_wdat_entry_t *entry = (acpi_wdat_entry_t *)current; /* Write countdown */ if (!fill_wdat_timeout_entry(entry)) goto out_err; entry++; /* Get boot status */ if (!fill_wdat_boot_status_entry(entry, ACPI_WDAT_GET_STATUS, ACPI_WDAT_READ_VALUE, TCO2_STS_SECOND_TO)) goto out_err; entry++; /* Set boot status */ if (!fill_wdat_boot_status_entry(entry, ACPI_WDAT_SET_STATUS, ACPI_WDAT_WRITE_VALUE | ACPI_WDAT_PRESERVE_REGISTER, 0)) goto out_err; entry++; /* Get running status */ if (!fill_wdat_run_state_entry(entry, ACPI_WDAT_GET_RUNNING_STATE, ACPI_WDAT_READ_VALUE, 0)) goto out_err; entry++; /* Start the watchdog */ if (!fill_wdat_run_state_entry(entry, ACPI_WDAT_SET_RUNNING_STATE, ACPI_WDAT_WRITE_VALUE | ACPI_WDAT_PRESERVE_REGISTER, 0)) goto out_err; entry++; /* Get stopped status */ if (!fill_wdat_run_state_entry(entry, ACPI_WDAT_GET_STOPPED_STATE, ACPI_WDAT_READ_VALUE, TCO1_TMR_HLT)) goto out_err; entry++; /* Stop the watchdog */ if (!fill_wdat_run_state_entry(entry, ACPI_WDAT_SET_STOPPED_STATE, ACPI_WDAT_WRITE_VALUE | ACPI_WDAT_PRESERVE_REGISTER, TCO1_TMR_HLT)) goto out_err; entry++; /* Ping */ if (!fill_wdat_ping_entry(entry)) goto out_err; entry++; wdat->entries = ((unsigned long)entry - current) / sizeof(acpi_wdat_entry_t); return (unsigned long)entry; out_err: wdat->flags = ACPI_WDAT_FLAG_DISABLED; printk(BIOS_ERR, "Fail to populate WDAT ACPI Table"); return current; }