/* SPDX-License-Identifier: GPL-2.0-or-later */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CPUID_6_EAX_ISST (1 << 7) __attribute__((weak)) unsigned long acpi_fill_mcfg(unsigned long current) { /* PCI Segment Group 0, Start Bus Number 0, End Bus Number is 255 */ current += acpi_create_mcfg_mmconfig((void *)current, CONFIG_MMCONF_BASE_ADDRESS, 0, 0, CONFIG_MMCONF_BUS_NUMBER - 1); return current; } static int acpi_sci_irq(void) { int sci_irq = 9; uint32_t scis; scis = soc_read_sci_irq_select(); scis &= SCI_IRQ_SEL; scis >>= SCI_IRQ_ADJUST; /* Determine how SCI is routed. */ switch (scis) { case SCIS_IRQ9: case SCIS_IRQ10: case SCIS_IRQ11: sci_irq = scis - SCIS_IRQ9 + 9; break; case SCIS_IRQ20: case SCIS_IRQ21: case SCIS_IRQ22: case SCIS_IRQ23: sci_irq = scis - SCIS_IRQ20 + 20; break; default: printk(BIOS_DEBUG, "Invalid SCI route! Defaulting to IRQ9.\n"); sci_irq = 9; break; } printk(BIOS_DEBUG, "SCI is IRQ%d\n", sci_irq); return sci_irq; } static unsigned long acpi_madt_irq_overrides(unsigned long current) { int sci = acpi_sci_irq(); uint16_t flags = MP_IRQ_TRIGGER_LEVEL; /* INT_SRC_OVR */ current += acpi_create_madt_irqoverride((void *)current, 0, 0, 2, 0); flags |= soc_madt_sci_irq_polarity(sci); /* SCI */ current += acpi_create_madt_irqoverride((void *)current, 0, sci, sci, flags); /* NMI */ current += acpi_create_madt_lapic_nmi((acpi_madt_lapic_nmi_t *)current, 0xff, 5, 1); if (is_x2apic_mode()) current += acpi_create_madt_lx2apic_nmi((acpi_madt_lx2apic_nmi_t *)current, 0xffffffff, 0x5, 1); return current; } __weak const struct madt_ioapic_info *soc_get_ioapic_info(size_t *entries) { *entries = 0; return NULL; } unsigned long acpi_fill_madt(unsigned long current) { const struct madt_ioapic_info *ioapic_table; size_t ioapic_entries; /* Local APICs */ current = acpi_create_madt_lapics(current); /* IOAPIC */ ioapic_table = soc_get_ioapic_info(&ioapic_entries); if (ioapic_entries) { for (int i = 0; i < ioapic_entries; i++) { current += acpi_create_madt_ioapic( (void *)current, ioapic_table[i].id, ioapic_table[i].addr, ioapic_table[i].gsi_base); } } else { /* Default SOC IOAPIC entry */ current += acpi_create_madt_ioapic((void *)current, 2, IO_APIC_ADDR, 0); } return acpi_madt_irq_overrides(current); } void acpi_fill_fadt(acpi_fadt_t *fadt) { const uint16_t pmbase = ACPI_BASE_ADDRESS; fadt->header.revision = get_acpi_table_revision(FADT); fadt->sci_int = acpi_sci_irq(); if (permanent_smi_handler()) { fadt->smi_cmd = APM_CNT; fadt->acpi_enable = APM_CNT_ACPI_ENABLE; fadt->acpi_disable = APM_CNT_ACPI_DISABLE; } fadt->pm1a_evt_blk = pmbase + PM1_STS; fadt->pm1a_cnt_blk = pmbase + PM1_CNT; fadt->gpe0_blk = pmbase + GPE0_STS(0); fadt->pm1_evt_len = 4; fadt->pm1_cnt_len = 2; /* GPE0 STS/EN pairs each 32 bits wide. */ fadt->gpe0_blk_len = 2 * GPE0_REG_MAX * sizeof(uint32_t); fadt->duty_offset = 1; fadt->day_alrm = 0xd; fadt->flags |= ACPI_FADT_WBINVD | ACPI_FADT_C1_SUPPORTED | ACPI_FADT_C2_MP_SUPPORTED | ACPI_FADT_SLEEP_BUTTON | ACPI_FADT_SEALED_CASE | ACPI_FADT_S4_RTC_WAKE | ACPI_FADT_PLATFORM_CLOCK; fadt->x_pm1a_evt_blk.space_id = ACPI_ADDRESS_SPACE_IO; fadt->x_pm1a_evt_blk.bit_width = fadt->pm1_evt_len * 8; fadt->x_pm1a_evt_blk.addrl = pmbase + PM1_STS; fadt->x_pm1a_evt_blk.access_size = ACPI_ACCESS_SIZE_WORD_ACCESS; fadt->x_pm1a_cnt_blk.space_id = ACPI_ADDRESS_SPACE_IO; fadt->x_pm1a_cnt_blk.bit_width = fadt->pm1_cnt_len * 8; fadt->x_pm1a_cnt_blk.addrl = pmbase + PM1_CNT; fadt->x_pm1a_cnt_blk.access_size = ACPI_ACCESS_SIZE_WORD_ACCESS; /* * Windows 10 requires x_gpe0_blk to be set starting with FADT revision 5. * The bit_width field intentionally overflows here. * The OSPM can instead use the values in `fadt->gpe0_blk{,_len}`, which * seems to work fine on Linux 5.0 and Windows 10. */ fadt->x_gpe0_blk.space_id = ACPI_ADDRESS_SPACE_IO; fadt->x_gpe0_blk.bit_width = fadt->gpe0_blk_len * 8; fadt->x_gpe0_blk.bit_offset = 0; fadt->x_gpe0_blk.access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS; fadt->x_gpe0_blk.addrl = fadt->gpe0_blk; fadt->x_gpe0_blk.addrh = 0; } unsigned long southbridge_write_acpi_tables(const struct device *device, unsigned long current, struct acpi_rsdp *rsdp) { if (CONFIG(SOC_INTEL_COMMON_BLOCK_UART)) { current = acpi_write_dbg2_pci_uart(rsdp, current, uart_get_device(), ACPI_ACCESS_SIZE_DWORD_ACCESS); } return acpi_write_hpet(device, current, rsdp); } __weak uint32_t acpi_fill_soc_wake(uint32_t generic_pm1_en, const struct chipset_power_state *ps) { return generic_pm1_en; } /* * Save wake source information for calculating ACPI _SWS values * * @pm1: PM1_STS register with only enabled events set * @gpe0: GPE0_STS registers with only enabled events set * * return the number of registers in the gpe0 array */ int soc_fill_acpi_wake(const struct chipset_power_state *ps, uint32_t *pm1, uint32_t **gpe0) { static uint32_t gpe0_sts[GPE0_REG_MAX]; uint32_t pm1_en; int i; /* * PM1_EN to check the basic wake events which can happen through * powerbtn or any other wake source like lidopen, key board press etc. */ pm1_en = ps->pm1_en; pm1_en = acpi_fill_soc_wake(pm1_en, ps); *pm1 = ps->pm1_sts & pm1_en; /* Mask off GPE0 status bits that are not enabled */ *gpe0 = &gpe0_sts[0]; for (i = 0; i < GPE0_REG_MAX; i++) gpe0_sts[i] = ps->gpe0_sts[i] & ps->gpe0_en[i]; return GPE0_REG_MAX; } int common_calculate_power_ratio(int tdp, int p1_ratio, int ratio) { u32 m; u32 power; /* * M = ((1.1 - ((p1_ratio - ratio) * 0.00625)) / 1.1) ^ 2 * * Power = (ratio / p1_ratio) * m * tdp */ m = (110000 - ((p1_ratio - ratio) * 625)) / 11; m = (m * m) / 1000; power = ((ratio * 100000 / p1_ratio) / 100); power *= (m / 100) * (tdp / 1000); power /= 1000; return power; } static void generate_c_state_entries(void) { acpi_cstate_t *c_state_map; size_t entries; c_state_map = soc_get_cstate_map(&entries); /* Generate C-state tables */ acpigen_write_CST_package(c_state_map, entries); } void generate_p_state_entries(int core, int cores_per_package) { int ratio_min, ratio_max, ratio_turbo, ratio_step; int coord_type, power_max, num_entries; int ratio, power, clock, clock_max; bool turbo; coord_type = cpu_get_coord_type(); ratio_min = cpu_get_min_ratio(); ratio_max = cpu_get_max_ratio(); clock_max = (ratio_max * cpu_get_bus_clock()) / KHz; turbo = (get_turbo_state() == TURBO_ENABLED); /* Calculate CPU TDP in mW */ power_max = cpu_get_power_max(); /* Write _PCT indicating use of FFixedHW */ acpigen_write_empty_PCT(); /* Write _PPC with no limit on supported P-state */ acpigen_write_PPC_NVS(); /* Write PSD indicating configured coordination type */ acpigen_write_PSD_package(core, 1, coord_type); /* Add P-state entries in _PSS table */ acpigen_write_name("_PSS"); /* Determine ratio points */ ratio_step = PSS_RATIO_STEP; do { num_entries = ((ratio_max - ratio_min) / ratio_step) + 1; if (((ratio_max - ratio_min) % ratio_step) > 0) num_entries += 1; if (turbo) num_entries += 1; if (num_entries > PSS_MAX_ENTRIES) ratio_step += 1; } while (num_entries > PSS_MAX_ENTRIES); /* _PSS package count depends on Turbo */ acpigen_write_package(num_entries); /* P[T] is Turbo state if enabled */ if (turbo) { ratio_turbo = cpu_get_max_turbo_ratio(); /* Add entry for Turbo ratio */ acpigen_write_PSS_package(clock_max + 1, /* MHz */ power_max, /* mW */ PSS_LATENCY_TRANSITION,/* lat1 */ PSS_LATENCY_BUSMASTER,/* lat2 */ ratio_turbo << 8, /* control */ ratio_turbo << 8); /* status */ num_entries -= 1; } /* First regular entry is max non-turbo ratio */ acpigen_write_PSS_package(clock_max, /* MHz */ power_max, /* mW */ PSS_LATENCY_TRANSITION,/* lat1 */ PSS_LATENCY_BUSMASTER,/* lat2 */ ratio_max << 8, /* control */ ratio_max << 8); /* status */ num_entries -= 1; /* Generate the remaining entries */ for (ratio = ratio_min + ((num_entries - 1) * ratio_step); ratio >= ratio_min; ratio -= ratio_step) { /* Calculate power at this ratio */ power = common_calculate_power_ratio(power_max, ratio_max, ratio); clock = (ratio * cpu_get_bus_clock()) / KHz; acpigen_write_PSS_package(clock, /* MHz */ power, /* mW */ PSS_LATENCY_TRANSITION,/* lat1 */ PSS_LATENCY_BUSMASTER,/* lat2 */ ratio << 8, /* control */ ratio << 8); /* status */ } /* Fix package length */ acpigen_pop_len(); } __attribute__ ((weak)) acpi_tstate_t *soc_get_tss_table(int *entries) { *entries = 0; return NULL; } void generate_t_state_entries(int core, int cores_per_package) { acpi_tstate_t *soc_tss_table; int entries; soc_tss_table = soc_get_tss_table(&entries); if (entries == 0) return; /* Indicate SW_ALL coordination for T-states */ acpigen_write_TSD_package(core, cores_per_package, SW_ALL); /* Indicate FixedHW so OS will use MSR */ acpigen_write_empty_PTC(); /* Set NVS controlled T-state limit */ acpigen_write_TPC("\\TLVL"); /* Write TSS table for MSR access */ acpigen_write_TSS_package(entries, soc_tss_table); } static void generate_cppc_entries(int core_id) { if (!(CONFIG(SOC_INTEL_COMMON_BLOCK_ACPI_CPPC) && cpuid_eax(6) & CPUID_6_EAX_ISST)) return; /* Generate GCPC package in first logical core */ if (core_id == 0) { struct cppc_config cppc_config; cpu_init_cppc_config(&cppc_config, CPPC_VERSION_2); acpigen_write_CPPC_package(&cppc_config); } /* Write _CPC entry for each logical core */ acpigen_write_CPPC_method(); } __weak void soc_power_states_generation(int core_id, int cores_per_package) { } void generate_cpu_entries(const struct device *device) { int core_id, cpu_id, pcontrol_blk = ACPI_BASE_ADDRESS; int plen = 6; int totalcores = dev_count_cpu(); unsigned int num_virt; unsigned int num_phys; cpu_read_topology(&num_phys, &num_virt); int numcpus = totalcores / num_virt; printk(BIOS_DEBUG, "Found %d CPU(s) with %d/%d physical/logical core(s) each.\n", numcpus, num_phys, num_virt); for (cpu_id = 0; cpu_id < numcpus; cpu_id++) { for (core_id = 0; core_id < num_virt; core_id++) { if (core_id > 0) { pcontrol_blk = 0; plen = 0; } /* Generate processor \_SB.CPUx */ acpigen_write_processor((cpu_id) * num_virt + core_id, pcontrol_blk, plen); /* Generate C-state tables */ generate_c_state_entries(); generate_cppc_entries(core_id); /* Soc specific power states generation */ soc_power_states_generation(core_id, num_virt); acpigen_pop_len(); } } /* PPKG is usually used for thermal management of the first and only package. */ acpigen_write_processor_package("PPKG", 0, num_virt); /* Add a method to notify processor nodes */ acpigen_write_processor_cnot(num_virt); }