/* * This file is part of the coreboot project. * * Copyright (C) 2017-2018 Intel Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <arch/cpu.h> #include <console/console.h> #include <device/pci.h> #include <cpu/x86/lapic.h> #include <cpu/x86/mp.h> #include <cpu/x86/msr.h> #include <cpu/intel/turbo.h> #include <intelblocks/cpulib.h> #include <intelblocks/mp_init.h> #include <intelblocks/smm.h> #include <romstage_handoff.h> #include <soc/cpu.h> #include <soc/msr.h> #include <soc/pci_devs.h> #include <soc/pm.h> #include <soc/smm.h> #include <soc/systemagent.h> #include <cpu/x86/mtrr.h> #include <cpu/intel/microcode.h> #include <cpu/intel/common/common.h> #include "chip.h" /* Convert time in seconds to POWER_LIMIT_1_TIME MSR value */ static const u8 power_limit_time_sec_to_msr[] = { [0] = 0x00, [1] = 0x0a, [2] = 0x0b, [3] = 0x4b, [4] = 0x0c, [5] = 0x2c, [6] = 0x4c, [7] = 0x6c, [8] = 0x0d, [10] = 0x2d, [12] = 0x4d, [14] = 0x6d, [16] = 0x0e, [20] = 0x2e, [24] = 0x4e, [28] = 0x6e, [32] = 0x0f, [40] = 0x2f, [48] = 0x4f, [56] = 0x6f, [64] = 0x10, [80] = 0x30, [96] = 0x50, [112] = 0x70, [128] = 0x11, }; /* Convert POWER_LIMIT_1_TIME MSR value to seconds */ static const u8 power_limit_time_msr_to_sec[] = { [0x00] = 0, [0x0a] = 1, [0x0b] = 2, [0x4b] = 3, [0x0c] = 4, [0x2c] = 5, [0x4c] = 6, [0x6c] = 7, [0x0d] = 8, [0x2d] = 10, [0x4d] = 12, [0x6d] = 14, [0x0e] = 16, [0x2e] = 20, [0x4e] = 24, [0x6e] = 28, [0x0f] = 32, [0x2f] = 40, [0x4f] = 48, [0x6f] = 56, [0x10] = 64, [0x30] = 80, [0x50] = 96, [0x70] = 112, [0x11] = 128, }; /* * Configure processor power limits if possible * This must be done AFTER set of BIOS_RESET_CPL */ void set_power_limits(u8 power_limit_1_time) { msr_t msr = rdmsr(MSR_PLATFORM_INFO); msr_t limit; unsigned int power_unit; unsigned int tdp, min_power, max_power, max_time, tdp_pl2, tdp_pl1; u8 power_limit_1_val; struct device *dev = SA_DEV_ROOT; config_t *conf = dev->chip_info; if (power_limit_1_time > ARRAY_SIZE(power_limit_time_sec_to_msr)) power_limit_1_time = 28; if (!(msr.lo & PLATFORM_INFO_SET_TDP)) return; /* Get units */ msr = rdmsr(MSR_PKG_POWER_SKU_UNIT); power_unit = 1 << (msr.lo & 0xf); /* Get power defaults for this SKU */ msr = rdmsr(MSR_PKG_POWER_SKU); tdp = msr.lo & 0x7fff; min_power = (msr.lo >> 16) & 0x7fff; max_power = msr.hi & 0x7fff; max_time = (msr.hi >> 16) & 0x7f; printk(BIOS_DEBUG, "CPU TDP: %u Watts\n", tdp / power_unit); if (power_limit_time_msr_to_sec[max_time] > power_limit_1_time) power_limit_1_time = power_limit_time_msr_to_sec[max_time]; if (min_power > 0 && tdp < min_power) tdp = min_power; if (max_power > 0 && tdp > max_power) tdp = max_power; power_limit_1_val = power_limit_time_sec_to_msr[power_limit_1_time]; /* Set long term power limit to TDP */ limit.lo = 0; tdp_pl1 = ((conf->tdp_pl1_override == 0) ? tdp : (conf->tdp_pl1_override * power_unit)); limit.lo |= (tdp_pl1 & PKG_POWER_LIMIT_MASK); /* Set PL1 Pkg Power clamp bit */ limit.lo |= PKG_POWER_LIMIT_CLAMP; limit.lo |= PKG_POWER_LIMIT_EN; limit.lo |= (power_limit_1_val & PKG_POWER_LIMIT_TIME_MASK) << PKG_POWER_LIMIT_TIME_SHIFT; /* Set short term power limit to 1.25 * TDP if no config given */ limit.hi = 0; tdp_pl2 = (conf->tdp_pl2_override == 0) ? (tdp * 125) / 100 : (conf->tdp_pl2_override * power_unit); printk(BIOS_DEBUG, "CPU PL2 = %u Watts\n", tdp_pl2 / power_unit); limit.hi |= (tdp_pl2) & PKG_POWER_LIMIT_MASK; limit.hi |= PKG_POWER_LIMIT_CLAMP; limit.hi |= PKG_POWER_LIMIT_EN; /* Power limit 2 time is only programmable on server SKU */ wrmsr(MSR_PKG_POWER_LIMIT, limit); /* Set PL2 power limit values in MCHBAR and disable PL1 */ MCHBAR32(MCH_PKG_POWER_LIMIT_LO) = limit.lo & (~(PKG_POWER_LIMIT_EN)); MCHBAR32(MCH_PKG_POWER_LIMIT_HI) = limit.hi; /* Set PsysPl2 */ if (conf->tdp_psyspl2) { limit = rdmsr(MSR_PLATFORM_POWER_LIMIT); limit.hi = 0; printk(BIOS_DEBUG, "CPU PsysPL2 = %u Watts\n", conf->tdp_psyspl2); limit.hi |= (conf->tdp_psyspl2 * power_unit) & PKG_POWER_LIMIT_MASK; limit.hi |= PKG_POWER_LIMIT_CLAMP; limit.hi |= PKG_POWER_LIMIT_EN; wrmsr(MSR_PLATFORM_POWER_LIMIT, limit); } /* Set PsysPl3 */ if (conf->tdp_psyspl3) { limit = rdmsr(MSR_PL3_CONTROL); limit.lo = 0; printk(BIOS_DEBUG, "CPU PsysPL3 = %u Watts\n", conf->tdp_psyspl3); limit.lo |= (conf->tdp_psyspl3 * power_unit) & PKG_POWER_LIMIT_MASK; /* Enable PsysPl3 */ limit.lo |= PKG_POWER_LIMIT_EN; /* set PsysPl3 time window */ limit.lo |= (conf->tdp_psyspl3_time & PKG_POWER_LIMIT_TIME_MASK) << PKG_POWER_LIMIT_TIME_SHIFT; /* set PsysPl3 duty cycle */ limit.lo |= (conf->tdp_psyspl3_dutycycle & PKG_POWER_LIMIT_DUTYCYCLE_MASK) << PKG_POWER_LIMIT_DUTYCYCLE_SHIFT; wrmsr(MSR_PL3_CONTROL, limit); } /* Set Pl4 */ if (conf->tdp_pl4) { limit = rdmsr(MSR_VR_CURRENT_CONFIG); limit.lo = 0; printk(BIOS_DEBUG, "CPU PL4 = %u Watts\n", conf->tdp_pl4); limit.lo |= (conf->tdp_pl4 * power_unit) & PKG_POWER_LIMIT_MASK; wrmsr(MSR_VR_CURRENT_CONFIG, limit); } /* Set DDR RAPL power limit by copying from MMIO to MSR */ msr.lo = MCHBAR32(MCH_DDR_POWER_LIMIT_LO); msr.hi = MCHBAR32(MCH_DDR_POWER_LIMIT_HI); wrmsr(MSR_DDR_RAPL_LIMIT, msr); /* Use nominal TDP values for CPUs with configurable TDP */ if (cpu_config_tdp_levels()) { msr = rdmsr(MSR_CONFIG_TDP_NOMINAL); limit.hi = 0; limit.lo = cpu_get_tdp_nominal_ratio(); wrmsr(MSR_TURBO_ACTIVATION_RATIO, limit); } } static void soc_fsp_load(void) { fsps_load(romstage_handoff_is_resume()); } static void configure_isst(void) { struct device *dev = SA_DEV_ROOT; config_t *conf = dev->chip_info; msr_t msr; if (conf && conf->speed_shift_enable) { /* * Kernel driver checks CPUID.06h:EAX[Bit 7] to determine if HWP * is supported or not. coreboot needs to configure MSR 0x1AA * which is then reflected in the CPUID register. */ msr = rdmsr(MSR_MISC_PWR_MGMT); msr.lo |= MISC_PWR_MGMT_ISST_EN; /* Enable Speed Shift */ msr.lo |= MISC_PWR_MGMT_ISST_EN_INT; /* Enable Interrupt */ msr.lo |= MISC_PWR_MGMT_ISST_EN_EPP; /* Enable EPP */ wrmsr(MSR_MISC_PWR_MGMT, msr); } else { msr = rdmsr(MSR_MISC_PWR_MGMT); msr.lo &= ~MISC_PWR_MGMT_ISST_EN; /* Disable Speed Shift */ msr.lo &= ~MISC_PWR_MGMT_ISST_EN_INT; /* Disable Interrupt */ msr.lo &= ~MISC_PWR_MGMT_ISST_EN_EPP; /* Disable EPP */ wrmsr(MSR_MISC_PWR_MGMT, msr); } } static void configure_misc(void) { struct device *dev = SA_DEV_ROOT; if (!dev) { printk(BIOS_ERR, "SA_DEV_ROOT device not found!\n"); return; } config_t *conf = dev->chip_info; msr_t msr; msr = rdmsr(IA32_MISC_ENABLE); msr.lo |= (1 << 0); /* Fast String enable */ msr.lo |= (1 << 3); /* TM1/TM2/EMTTM enable */ /* Set EIST status */ cpu_set_eist(conf->eist_enable); wrmsr(IA32_MISC_ENABLE, msr); /* Disable Thermal interrupts */ msr.lo = 0; msr.hi = 0; wrmsr(IA32_THERM_INTERRUPT, msr); /* Enable package critical interrupt only */ msr.lo = 1 << 4; msr.hi = 0; wrmsr(IA32_PACKAGE_THERM_INTERRUPT, msr); /* Enable PROCHOT */ msr = rdmsr(MSR_POWER_CTL); msr.lo |= (1 << 0); /* Enable Bi-directional PROCHOT as an input*/ msr.lo |= (1 << 23); /* Lock it */ wrmsr(MSR_POWER_CTL, msr); } static void enable_lapic_tpr(void) { msr_t msr; msr = rdmsr(MSR_PIC_MSG_CONTROL); msr.lo &= ~(1 << 10); /* Enable APIC TPR updates */ wrmsr(MSR_PIC_MSG_CONTROL, msr); } static void configure_dca_cap(void) { uint32_t feature_flag; msr_t msr; /* Check feature flag in CPUID.(EAX=1):ECX[18]==1 */ feature_flag = cpu_get_feature_flags_ecx(); if (feature_flag & CPUID_DCA) { msr = rdmsr(IA32_PLATFORM_DCA_CAP); msr.lo |= 1; wrmsr(IA32_PLATFORM_DCA_CAP, msr); } } static void set_energy_perf_bias(u8 policy) { msr_t msr; int ecx; /* Determine if energy efficient policy is supported. */ ecx = cpuid_ecx(0x6); if (!(ecx & (1 << 3))) return; /* Energy Policy is bits 3:0 */ msr = rdmsr(IA32_ENERGY_PERF_BIAS); msr.lo &= ~0xf; msr.lo |= policy & 0xf; wrmsr(IA32_ENERGY_PERF_BIAS, msr); } static void configure_c_states(void) { msr_t msr; /* C-state Interrupt Response Latency Control 1 - package C6/C7 short */ msr.hi = 0; msr.lo = IRTL_VALID | IRTL_32768_NS | C_STATE_LATENCY_CONTROL_1_LIMIT; wrmsr(MSR_C_STATE_LATENCY_CONTROL_1, msr); /* C-state Interrupt Response Latency Control 2 - package C6/C7 long */ msr.hi = 0; msr.lo = IRTL_VALID | IRTL_32768_NS | C_STATE_LATENCY_CONTROL_2_LIMIT; wrmsr(MSR_C_STATE_LATENCY_CONTROL_2, msr); /* C-state Interrupt Response Latency Control 3 - package C8 */ msr.hi = 0; msr.lo = IRTL_VALID | IRTL_32768_NS | C_STATE_LATENCY_CONTROL_3_LIMIT; wrmsr(MSR_C_STATE_LATENCY_CONTROL_3, msr); /* C-state Interrupt Response Latency Control 4 - package C9 */ msr.hi = 0; msr.lo = IRTL_VALID | IRTL_32768_NS | C_STATE_LATENCY_CONTROL_4_LIMIT; wrmsr(MSR_C_STATE_LATENCY_CONTROL_4, msr); /* C-state Interrupt Response Latency Control 5 - package C10 */ msr.hi = 0; msr.lo = IRTL_VALID | IRTL_32768_NS | C_STATE_LATENCY_CONTROL_5_LIMIT; wrmsr(MSR_C_STATE_LATENCY_CONTROL_5, msr); } static void configure_thermal_target(void) { struct device *dev = SA_DEV_ROOT; config_t *conf = dev->chip_info; msr_t msr; /* Set TCC activation offset if supported */ msr = rdmsr(MSR_PLATFORM_INFO); if ((msr.lo & (1 << 30)) && conf->tcc_offset) { msr = rdmsr(MSR_TEMPERATURE_TARGET); msr.lo &= ~(0xf << 24); /* Bits 27:24 */ msr.lo |= (conf->tcc_offset & 0xf) << 24; wrmsr(MSR_TEMPERATURE_TARGET, msr); } msr = rdmsr(MSR_TEMPERATURE_TARGET); msr.lo &= ~0x7f; /* Bits 6:0 */ msr.lo |= 0xe6; /* setting 100ms thermal time window */ wrmsr(MSR_TEMPERATURE_TARGET, msr); } /* * The emulated ACPI timer allows replacing of the ACPI timer * (PM1_TMR) to have no impart on the system. */ static void enable_pm_timer_emulation(void) { /* ACPI PM timer emulation */ msr_t msr; /* * The derived frequency is calculated as follows: * (CTC_FREQ * msr[63:32]) >> 32 = target frequency. * Back solve the multiplier so the 3.579545MHz ACPI timer * frequency is used. */ msr.hi = (3579545ULL << 32) / CTC_FREQ; /* Set PM1 timer IO port and enable*/ msr.lo = (EMULATE_DELAY_VALUE << EMULATE_DELAY_OFFSET_VALUE) | EMULATE_PM_TMR_EN | (ACPI_BASE_ADDRESS + PM1_TMR); wrmsr(MSR_EMULATE_PM_TIMER, msr); } /* All CPUs including BSP will run the following function. */ void soc_core_init(struct device *cpu) { /* Clear out pending MCEs */ /* TODO(adurbin): This should only be done on a cold boot. Also, some * of these banks are core vs package scope. For now every CPU clears * every bank. */ mca_configure(NULL); /* Enable the local CPU apics */ enable_lapic_tpr(); setup_lapic(); /* Configure c-state interrupt response time */ configure_c_states(); /* Configure Enhanced SpeedStep and Thermal Sensors */ configure_misc(); /* Configure Intel Speed Shift */ configure_isst(); /* Enable ACPI Timer Emulation via MSR 0x121 */ enable_pm_timer_emulation(); /* Enable Direct Cache Access */ configure_dca_cap(); /* Set energy policy */ set_energy_perf_bias(ENERGY_POLICY_NORMAL); /* Enable Turbo */ enable_turbo(); /* Enable Vmx */ set_vmx_and_lock(); } static void per_cpu_smm_trigger(void) { /* Relocate the SMM handler. */ smm_relocate(); } static void post_mp_init(void) { /* Set Max Ratio */ cpu_set_max_ratio(); /* * Now that all APs have been relocated as well as the BSP let SMIs * start flowing. */ smm_southbridge_enable(GBL_EN); /* Lock down the SMRAM space. */ smm_lock(); } static const struct mp_ops mp_ops = { /* * Skip Pre MP init MTRR programming as MTRRs are mirrored from BSP, * that are set prior to ramstage. * Real MTRRs programming are being done after resource allocation. */ .pre_mp_init = soc_fsp_load, .get_cpu_count = get_cpu_count, .get_smm_info = smm_info, .get_microcode_info = get_microcode_info, .pre_mp_smm_init = smm_initialize, .per_cpu_smm_trigger = per_cpu_smm_trigger, .relocation_handler = smm_relocation_handler, .post_mp_init = post_mp_init, }; void soc_init_cpus(struct bus *cpu_bus) { if (mp_init_with_smm(cpu_bus, &mp_ops)) printk(BIOS_ERR, "MP initialization failure.\n"); /* Thermal throttle activation offset */ configure_thermal_target(); } int soc_skip_ucode_update(u32 current_patch_id, u32 new_patch_id) { msr_t msr1; msr_t msr2; /* * CFL and WHL CPU die are based on KBL CPU so we need to * have this check, where CNL CPU die is not based on KBL CPU * so skip this check for CNL. */ if (!CONFIG(SOC_INTEL_COMMON_CANNONLAKE_BASE)) return 0; /* * If PRMRR/SGX is supported the FIT microcode load will set the msr * 0x08b with the Patch revision id one less than the id in the * microcode binary. The PRMRR support is indicated in the MSR * MTRRCAP[12]. If SGX is not enabled, check and avoid reloading the * same microcode during CPU initialization. If SGX is enabled, as * part of SGX BIOS initialization steps, the same microcode needs to * be reloaded after the core PRMRR MSRs are programmed. */ msr1 = rdmsr(MTRR_CAP_MSR); msr2 = rdmsr(MSR_PRMRR_PHYS_BASE); if (msr2.lo && (current_patch_id == new_patch_id - 1)) return 0; return (msr1.lo & PRMRR_SUPPORTED) && (current_patch_id == new_patch_id - 1); }