/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "chip.h" bool cpu_soc_is_in_untrusted_mode(void) { msr_t msr; msr = rdmsr(MSR_BIOS_DONE); return !!(msr.lo & ENABLE_IA_UNTRUSTED); } static void soc_fsp_load(void) { fsps_load(); } static void configure_misc(void) { msr_t msr; config_t *conf = config_of_soc(); msr = rdmsr(IA32_MISC_ENABLE); msr.lo |= (1 << 0); /* Fast String enable */ msr.lo |= (1 << 3); /* TM1/TM2/EMTTM enable */ wrmsr(IA32_MISC_ENABLE, msr); /* Set EIST status */ cpu_set_eist(conf->eist_enable); /* Disable Thermal interrupts */ msr.lo = 0; msr.hi = 0; wrmsr(IA32_THERM_INTERRUPT, msr); /* Enable package critical interrupt only */ msr.lo = 1 << 4; msr.hi = 0; wrmsr(IA32_PACKAGE_THERM_INTERRUPT, msr); /* Enable PROCHOT */ msr = rdmsr(MSR_POWER_CTL); msr.lo |= (1 << 0); /* Enable Bi-directional PROCHOT as an input */ msr.lo |= (1 << 18); /* Enable Energy/Performance Bias control */ msr.lo |= (1 << 23); /* Lock it */ wrmsr(MSR_POWER_CTL, msr); } static void configure_c_states(const config_t *const cfg) { msr_t msr; msr = rdmsr(MSR_PKG_CST_CONFIG_CONTROL); if (cfg->max_package_c_state && (msr.lo & 0xf) >= cfg->max_package_c_state) { msr.lo = (msr.lo & ~0xf) | ((cfg->max_package_c_state - 1) & 0xf); } msr.lo |= CST_CFG_LOCK_MASK; wrmsr(MSR_PKG_CST_CONFIG_CONTROL, msr); /* C-state Interrupt Response Latency Control 0 - package C3 latency */ msr.hi = 0; msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_0_LIMIT; wrmsr(MSR_C_STATE_LATENCY_CONTROL_0, msr); /* C-state Interrupt Response Latency Control 1 - package C6/C7 short */ msr.hi = 0; msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_1_LIMIT; wrmsr(MSR_C_STATE_LATENCY_CONTROL_1, msr); /* C-state Interrupt Response Latency Control 2 - package C6/C7 long */ msr.hi = 0; msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_2_LIMIT; wrmsr(MSR_C_STATE_LATENCY_CONTROL_2, msr); /* C-state Interrupt Response Latency Control 3 - package C8 */ msr.hi = 0; msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_3_LIMIT; wrmsr(MSR_C_STATE_LATENCY_CONTROL_3, msr); /* C-state Interrupt Response Latency Control 4 - package C9 */ msr.hi = 0; msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_4_LIMIT; wrmsr(MSR_C_STATE_LATENCY_CONTROL_4, msr); /* C-state Interrupt Response Latency Control 5 - package C10 */ msr.hi = 0; msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_5_LIMIT; wrmsr(MSR_C_STATE_LATENCY_CONTROL_5, msr); } /* All CPUs including BSP will run the following function. */ void soc_core_init(struct device *cpu) { config_t *cfg = config_of_soc(); /* Clear out pending MCEs */ /* TODO(adurbin): This should only be done on a cold boot. Also, some * of these banks are core vs package scope. For now every CPU clears * every bank. */ mca_configure(); enable_lapic_tpr(); /* Configure c-state interrupt response time */ configure_c_states(cfg); /* Configure Enhanced SpeedStep and Thermal Sensors */ configure_misc(); set_aesni_lock(); enable_pm_timer_emulation(); /* Enable Direct Cache Access */ configure_dca_cap(); /* Set energy policy */ set_energy_perf_bias(ENERGY_POLICY_NORMAL); if (cfg->cpu_turbo_disable) disable_turbo(); else enable_turbo(); /* Enable Vmx */ set_feature_ctrl_vmx_arg(CONFIG(ENABLE_VMX) && !cfg->disable_vmx); set_feature_ctrl_lock(); } static void per_cpu_smm_trigger(void) { /* Relocate the SMM handler. */ smm_relocate(); } void smm_lock(void) { struct device *sa_dev = pcidev_path_on_root(SA_DEVFN_ROOT); /* * LOCK the SMM memory window and enable normal SMM. * After running this function, only a full reset can * make the SMM registers writable again. */ printk(BIOS_DEBUG, "Locking SMM.\n"); pci_write_config8(sa_dev, SMRAM, D_LCK | G_SMRAME | C_BASE_SEG); } static void post_mp_init(void) { /* Set Max Ratio */ cpu_set_max_ratio(); /* * Now that all APs have been relocated as well as the BSP let SMIs * start flowing. */ global_smi_enable_no_pwrbtn(); /* Lock down the SMRAM space. */ smm_lock(); } static const struct mp_ops mp_ops = { /* * Skip Pre MP init MTRR programming as MTRRs are mirrored from BSP, * that are set prior to ramstage. * Real MTRRs programming are being done after resource allocation. */ .pre_mp_init = soc_fsp_load, .get_cpu_count = get_cpu_count, .get_smm_info = smm_info, .get_microcode_info = get_microcode_info, .pre_mp_smm_init = smm_initialize, .per_cpu_smm_trigger = per_cpu_smm_trigger, .relocation_handler = smm_relocation_handler, .post_mp_init = post_mp_init, }; void soc_init_cpus(struct bus *cpu_bus) { /* TODO: Handle mp_init_with_smm failure? */ mp_init_with_smm(cpu_bus, &mp_ops); /* Thermal throttle activation offset */ configure_tcc_thermal_target(); } int soc_skip_ucode_update(u32 current_patch_id, u32 new_patch_id) { msr_t msr1; msr_t msr2; /* * If PRMRR/SGX is supported the FIT microcode load will set the msr * 0x08b with the Patch revision id one less than the id in the * microcode binary. The PRMRR support is indicated in the MSR * MTRRCAP[12]. If SGX is not enabled, check and avoid reloading the * same microcode during CPU initialization. If SGX is enabled, as * part of SGX BIOS initialization steps, the same microcode needs to * be reloaded after the core PRMRR MSRs are programmed. */ msr1 = rdmsr(MTRR_CAP_MSR); msr2 = rdmsr(MSR_PRMRR_PHYS_BASE); if (msr2.lo && (current_patch_id == new_patch_id - 1)) return 0; return (msr1.lo & MTRR_CAP_PRMRR) && (current_patch_id == new_patch_id - 1); }