/* * This file is part of the coreboot project. * * Copyright (C) 2008-2009 coresystems GmbH * Copyright (C) 2014 Google Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <delay.h> #include <types.h> #include <arch/io.h> #include <device/mmio.h> #include <device/pci_ops.h> #include <console/console.h> #include <cpu/x86/cache.h> #include <device/pci_def.h> #include <cpu/x86/smm.h> #include <cpu/intel/em64t101_save_state.h> #include <spi-generic.h> #include <elog.h> #include <halt.h> #include <option.h> #include <soc/lpc.h> #include <soc/nvs.h> #include <soc/pci_devs.h> #include <soc/pm.h> #include <soc/rcba.h> #include <soc/xhci.h> #include <drivers/intel/gma/i915_reg.h> static u8 smm_initialized = 0; /* * GNVS needs to be updated by an 0xEA PM Trap (B2) after it has been located * by coreboot. */ static global_nvs_t *gnvs; global_nvs_t *smm_get_gnvs(void) { return gnvs; } int southbridge_io_trap_handler(int smif) { switch (smif) { case 0x32: printk(BIOS_DEBUG, "OS Init\n"); /* gnvs->smif: * On success, the IO Trap Handler returns 0 * On failure, the IO Trap Handler returns a value != 0 */ gnvs->smif = 0; return 1; /* IO trap handled */ } /* Not handled */ return 0; } /** * @brief Set the EOS bit */ void southbridge_smi_set_eos(void) { enable_smi(EOS); } static void busmaster_disable_on_bus(int bus) { int slot, func; unsigned int val; unsigned char hdr; for (slot = 0; slot < 0x20; slot++) { for (func = 0; func < 8; func++) { u32 reg32; pci_devfn_t dev = PCI_DEV(bus, slot, func); val = pci_read_config32(dev, PCI_VENDOR_ID); if (val == 0xffffffff || val == 0x00000000 || val == 0x0000ffff || val == 0xffff0000) continue; /* Disable Bus Mastering for this one device */ reg32 = pci_read_config32(dev, PCI_COMMAND); reg32 &= ~PCI_COMMAND_MASTER; pci_write_config32(dev, PCI_COMMAND, reg32); /* If this is a bridge, then follow it. */ hdr = pci_read_config8(dev, PCI_HEADER_TYPE); hdr &= 0x7f; if (hdr == PCI_HEADER_TYPE_BRIDGE || hdr == PCI_HEADER_TYPE_CARDBUS) { unsigned int buses; buses = pci_read_config32(dev, PCI_PRIMARY_BUS); busmaster_disable_on_bus((buses >> 8) & 0xff); } } } } /* * Turn off the backlight if it is on, and wait for the specified * backlight off delay. This will allow panel power timings to meet * spec and prevent brief garbage on the screen when turned off * during firmware with power button triggered SMI. */ static void backlight_off(void) { void *reg_base; uint32_t pp_ctrl; uint32_t bl_off_delay; reg_base = (void *)((uintptr_t)pci_read_config32(SA_DEV_IGD, PCI_BASE_ADDRESS_0) & ~0xf); /* Check if backlight is enabled */ pp_ctrl = read32(reg_base + PCH_PP_CONTROL); if (!(pp_ctrl & EDP_BLC_ENABLE)) return; /* Enable writes to this register */ pp_ctrl &= ~PANEL_UNLOCK_MASK; pp_ctrl |= PANEL_UNLOCK_REGS; /* Turn off backlight */ pp_ctrl &= ~EDP_BLC_ENABLE; write32(reg_base + PCH_PP_CONTROL, pp_ctrl); read32(reg_base + PCH_PP_CONTROL); /* Read backlight off delay in 100us units */ bl_off_delay = read32(reg_base + PCH_PP_OFF_DELAYS); bl_off_delay &= PANEL_LIGHT_OFF_DELAY_MASK; bl_off_delay *= 100; /* Wait for backlight to turn off */ udelay(bl_off_delay); printk(BIOS_INFO, "Backlight turned off\n"); } static void southbridge_smi_sleep(void) { u8 reg8; u32 reg32; u8 slp_typ; u8 s5pwr = CONFIG_MAINBOARD_POWER_FAILURE_STATE; /* save and recover RTC port values */ u8 tmp70, tmp72; tmp70 = inb(0x70); tmp72 = inb(0x72); get_option(&s5pwr, "power_on_after_fail"); outb(tmp70, 0x70); outb(tmp72, 0x72); /* First, disable further SMIs */ disable_smi(SLP_SMI_EN); /* Figure out SLP_TYP */ reg32 = inl(ACPI_BASE_ADDRESS + PM1_CNT); printk(BIOS_SPEW, "SMI#: SLP = 0x%08x\n", reg32); slp_typ = acpi_sleep_from_pm1(reg32); /* Do any mainboard sleep handling */ mainboard_smi_sleep(slp_typ); /* USB sleep preparations */ usb_xhci_sleep_prepare(PCH_DEV_XHCI, slp_typ); /* Log S3, S4, and S5 entry */ if (slp_typ >= ACPI_S3) elog_gsmi_add_event_byte(ELOG_TYPE_ACPI_ENTER, slp_typ); /* Clear pending GPE events */ clear_gpe_status(); /* Next, do the deed. */ switch (slp_typ) { case ACPI_S0: printk(BIOS_DEBUG, "SMI#: Entering S0 (On)\n"); break; case ACPI_S1: printk(BIOS_DEBUG, "SMI#: Entering S1 (Assert STPCLK#)\n"); break; case ACPI_S3: printk(BIOS_DEBUG, "SMI#: Entering S3 (Suspend-To-RAM)\n"); /* Invalidate the cache before going to S3 */ wbinvd(); break; case ACPI_S4: printk(BIOS_DEBUG, "SMI#: Entering S4 (Suspend-To-Disk)\n"); break; case ACPI_S5: printk(BIOS_DEBUG, "SMI#: Entering S5 (Soft Power off)\n"); /* Turn off backlight if needed */ backlight_off(); /* Disable all GPE */ disable_all_gpe(); /* Always set the flag in case CMOS was changed on runtime. For * "KEEP", switch to "OFF" - KEEP is software emulated */ reg8 = pci_read_config8(PCH_DEV_LPC, GEN_PMCON_3); if (s5pwr == MAINBOARD_POWER_ON) reg8 &= ~1; else reg8 |= 1; pci_write_config8(PCH_DEV_LPC, GEN_PMCON_3, reg8); /* also iterates over all bridges on bus 0 */ busmaster_disable_on_bus(0); break; default: printk(BIOS_DEBUG, "SMI#: ERROR: SLP_TYP reserved\n"); break; } /* * Write back to the SLP register to cause the originally intended * event again. We need to set BIT13 (SLP_EN) though to make the * sleep happen. */ enable_pm1_control(SLP_EN); /* Make sure to stop executing code here for S3/S4/S5 */ if (slp_typ >= ACPI_S3) halt(); /* * In most sleep states, the code flow of this function ends at * the line above. However, if we entered sleep state S1 and wake * up again, we will continue to execute code in this function. */ reg32 = inl(ACPI_BASE_ADDRESS + PM1_CNT); if (reg32 & SCI_EN) { /* The OS is not an ACPI OS, so we set the state to S0 */ disable_pm1_control(SLP_EN | SLP_TYP); } } /* * Look for Synchronous IO SMI and use save state from that * core in case we are not running on the same core that * initiated the IO transaction. */ static em64t101_smm_state_save_area_t *smi_apmc_find_state_save(u8 cmd) { em64t101_smm_state_save_area_t *state; int node; /* Check all nodes looking for the one that issued the IO */ for (node = 0; node < CONFIG_MAX_CPUS; node++) { state = smm_get_save_state(node); /* Check for Synchronous IO (bit0==1) */ if (!(state->io_misc_info & (1 << 0))) continue; /* Make sure it was a write (bit4==0) */ if (state->io_misc_info & (1 << 4)) continue; /* Check for APMC IO port */ if (((state->io_misc_info >> 16) & 0xff) != APM_CNT) continue; /* Check AX against the requested command */ if ((state->rax & 0xff) != cmd) continue; return state; } return NULL; } static void southbridge_smi_gsmi(void) { u32 *ret, *param; u8 sub_command; em64t101_smm_state_save_area_t *io_smi = smi_apmc_find_state_save(APM_CNT_ELOG_GSMI); if (!io_smi) return; /* Command and return value in EAX */ ret = (u32 *)&io_smi->rax; sub_command = (u8)(*ret >> 8); /* Parameter buffer in EBX */ param = (u32 *)&io_smi->rbx; /* drivers/elog/gsmi.c */ *ret = gsmi_exec(sub_command, param); } static void southbridge_smi_apmc(void) { u8 reg8; em64t101_smm_state_save_area_t *state; /* Emulate B2 register as the FADT / Linux expects it */ reg8 = inb(APM_CNT); switch (reg8) { case APM_CNT_CST_CONTROL: printk(BIOS_DEBUG, "C-state control\n"); break; case APM_CNT_PST_CONTROL: printk(BIOS_DEBUG, "P-state control\n"); break; case APM_CNT_ACPI_DISABLE: disable_pm1_control(SCI_EN); printk(BIOS_DEBUG, "SMI#: ACPI disabled.\n"); break; case APM_CNT_ACPI_ENABLE: enable_pm1_control(SCI_EN); printk(BIOS_DEBUG, "SMI#: ACPI enabled.\n"); break; case APM_CNT_GNVS_UPDATE: if (smm_initialized) { printk(BIOS_DEBUG, "SMI#: SMM structures already initialized!\n"); return; } state = smi_apmc_find_state_save(reg8); if (state) { /* EBX in the state save contains the GNVS pointer */ gnvs = (global_nvs_t *)((u32)state->rbx); smm_initialized = 1; printk(BIOS_DEBUG, "SMI#: Setting GNVS to %p\n", gnvs); } break; case APM_CNT_ELOG_GSMI: if (CONFIG(ELOG_GSMI)) southbridge_smi_gsmi(); break; } mainboard_smi_apmc(reg8); } static void southbridge_smi_pm1(void) { u16 pm1_sts = clear_pm1_status(); /* While OSPM is not active, poweroff immediately * on a power button event. */ if (pm1_sts & PWRBTN_STS) { /* power button pressed */ elog_gsmi_add_event(ELOG_TYPE_POWER_BUTTON); disable_pm1_control(-1UL); enable_pm1_control(SLP_EN | (SLP_TYP_S5 << 10)); } } static void southbridge_smi_gpe0(void) { clear_gpe_status(); } static void southbridge_smi_gpi(void) { mainboard_smi_gpi(clear_alt_smi_status()); /* Clear again after mainboard handler */ clear_alt_smi_status(); } static void southbridge_smi_mc(void) { u32 reg32 = inl(ACPI_BASE_ADDRESS + SMI_EN); /* Are microcontroller SMIs enabled? */ if ((reg32 & MCSMI_EN) == 0) return; printk(BIOS_DEBUG, "Microcontroller SMI.\n"); } static void southbridge_smi_tco(void) { u32 tco_sts = clear_tco_status(); /* Any TCO event? */ if (!tco_sts) return; // BIOSWR if (tco_sts & (1 << 8)) { u8 bios_cntl = pci_read_config16(PCH_DEV_LPC, BIOS_CNTL); if (bios_cntl & 1) { /* * BWE is RW, so the SMI was caused by a * write to BWE, not by a write to the BIOS * * This is the place where we notice someone * is trying to tinker with the BIOS. We are * trying to be nice and just ignore it. A more * resolute answer would be to power down the * box. */ printk(BIOS_DEBUG, "Switching back to RO\n"); pci_write_config32(PCH_DEV_LPC, BIOS_CNTL, (bios_cntl & ~1)); } /* No else for now? */ } else if (tco_sts & (1 << 3)) { /* TIMEOUT */ /* Handle TCO timeout */ printk(BIOS_DEBUG, "TCO Timeout.\n"); } } static void southbridge_smi_periodic(void) { u32 reg32 = inl(ACPI_BASE_ADDRESS + SMI_EN); /* Are periodic SMIs enabled? */ if ((reg32 & PERIODIC_EN) == 0) return; printk(BIOS_DEBUG, "Periodic SMI.\n"); } static void southbridge_smi_monitor(void) { #define IOTRAP(x) (trap_sts & (1 << x)) u32 trap_sts, trap_cycle; u32 data, mask = 0; int i; trap_sts = RCBA32(0x1e00); // TRSR - Trap Status Register RCBA32(0x1e00) = trap_sts; // Clear trap(s) in TRSR trap_cycle = RCBA32(0x1e10); for (i = 16; i < 20; i++) { if (trap_cycle & (1 << i)) mask |= (0xff << ((i - 16) << 2)); } /* IOTRAP(3) SMI function call */ if (IOTRAP(3)) { if (gnvs && gnvs->smif) io_trap_handler(gnvs->smif); // call function smif return; } /* IOTRAP(2) currently unused * IOTRAP(1) currently unused */ /* IOTRAP(0) SMIC */ if (IOTRAP(0)) { // It's a write if (!(trap_cycle & (1 << 24))) { printk(BIOS_DEBUG, "SMI1 command\n"); data = RCBA32(0x1e18); data &= mask; // if (smi1) // southbridge_smi_command(data); // return; } // Fall through to debug } printk(BIOS_DEBUG, " trapped io address = 0x%x\n", trap_cycle & 0xfffc); for (i = 0; i < 4; i++) if (IOTRAP(i)) printk(BIOS_DEBUG, " TRAP = %d\n", i); printk(BIOS_DEBUG, " AHBE = %x\n", (trap_cycle >> 16) & 0xf); printk(BIOS_DEBUG, " MASK = 0x%08x\n", mask); printk(BIOS_DEBUG, " read/write: %s\n", (trap_cycle & (1 << 24)) ? "read" : "write"); if (!(trap_cycle & (1 << 24))) { /* Write Cycle */ data = RCBA32(0x1e18); printk(BIOS_DEBUG, " iotrap written data = 0x%08x\n", data); } #undef IOTRAP } typedef void (*smi_handler_t)(void); static smi_handler_t southbridge_smi[32] = { NULL, // [0] reserved NULL, // [1] reserved NULL, // [2] BIOS_STS NULL, // [3] LEGACY_USB_STS southbridge_smi_sleep, // [4] SLP_SMI_STS southbridge_smi_apmc, // [5] APM_STS NULL, // [6] SWSMI_TMR_STS NULL, // [7] reserved southbridge_smi_pm1, // [8] PM1_STS southbridge_smi_gpe0, // [9] GPE0_STS southbridge_smi_gpi, // [10] GPI_STS southbridge_smi_mc, // [11] MCSMI_STS NULL, // [12] DEVMON_STS southbridge_smi_tco, // [13] TCO_STS southbridge_smi_periodic, // [14] PERIODIC_STS NULL, // [15] SERIRQ_SMI_STS NULL, // [16] SMBUS_SMI_STS NULL, // [17] LEGACY_USB2_STS NULL, // [18] INTEL_USB2_STS NULL, // [19] reserved NULL, // [20] PCI_EXP_SMI_STS southbridge_smi_monitor, // [21] MONITOR_STS NULL, // [22] reserved NULL, // [23] reserved NULL, // [24] reserved NULL, // [25] EL_SMI_STS NULL, // [26] SPI_STS NULL, // [27] reserved NULL, // [28] reserved NULL, // [29] reserved NULL, // [30] reserved NULL // [31] reserved }; /** * @brief Interrupt handler for SMI# * * @param smm_revision revision of the smm state save map */ void southbridge_smi_handler(void) { int i; u32 smi_sts; /* We need to clear the SMI status registers, or we won't see what's * happening in the following calls. */ smi_sts = clear_smi_status(); /* Call SMI sub handler for each of the status bits */ for (i = 0; i < 31; i++) { if (smi_sts & (1 << i)) { if (southbridge_smi[i]) { southbridge_smi[i](); } else { printk(BIOS_DEBUG, "SMI_STS[%d] occurred, but no " "handler available.\n", i); } } } }