/* * This file is part of the coreboot project. * * Copyright (C) 2008-2009 coresystems GmbH * Copyright (C) 2014 Google Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <console/console.h> #include <device/device.h> #include <device/pci.h> #include <device/pciexp.h> #include <device/pci_def.h> #include <device/pci_ids.h> #include <soc/gpio.h> #include <soc/lpc.h> #include <soc/iobp.h> #include <soc/pch.h> #include <soc/pci_devs.h> #include <soc/rcba.h> #include <soc/intel/broadwell/chip.h> #include <soc/cpu.h> #include <delay.h> /* Low Power variant has 6 root ports. */ #define NUM_ROOT_PORTS 6 struct root_port_config { /* RPFN is a write-once register so keep a copy until it is written */ u32 orig_rpfn; u32 new_rpfn; u32 pin_ownership; u32 strpfusecfg1; u32 strpfusecfg2; u32 strpfusecfg3; u32 b0d28f0_32c; u32 b0d28f4_32c; u32 b0d28f5_32c; int coalesce; int gbe_port; int num_ports; device_t ports[NUM_ROOT_PORTS]; }; static struct root_port_config rpc; static inline int root_port_is_first(device_t dev) { return PCI_FUNC(dev->path.pci.devfn) == 0; } static inline int root_port_is_last(device_t dev) { return PCI_FUNC(dev->path.pci.devfn) == (rpc.num_ports - 1); } /* Root ports are numbered 1..N in the documentation. */ static inline int root_port_number(device_t dev) { return PCI_FUNC(dev->path.pci.devfn) + 1; } static void root_port_config_update_gbe_port(void) { /* Is the Gbe Port enabled? */ if (!((rpc.strpfusecfg1 >> 19) & 1)) return; switch ((rpc.strpfusecfg1 >> 16) & 0x7) { case 0: rpc.gbe_port = 3; break; case 1: rpc.gbe_port = 4; break; case 2: case 3: case 4: case 5: /* Lanes 0-4 of Root Port 5. */ rpc.gbe_port = 5; break; default: printk(BIOS_DEBUG, "Invalid GbE Port Selection.\n"); } } static void pcie_iosf_port_grant_count(device_t dev) { u8 update_val; u32 rpcd = (pci_read_config32(dev, 0xfc) >> 14) & 0x3; switch (rpcd) { case 1: case 3: update_val = 0x02; break; case 2: update_val = 0x22; break; default: update_val = 0x00; break; } RCBA32(0x103C) = (RCBA32(0x103C) & (~0xff)) | update_val; } static void root_port_init_config(device_t dev) { int rp; u32 data = 0; u8 resp, id; if (root_port_is_first(dev)) { rpc.orig_rpfn = RCBA32(RPFN); rpc.new_rpfn = rpc.orig_rpfn; rpc.num_ports = NUM_ROOT_PORTS; rpc.gbe_port = -1; /* RP0 f5[3:0] = 0101b*/ pci_update_config8(dev, 0xf5, ~0xa, 0x5); pcie_iosf_port_grant_count(dev); rpc.pin_ownership = pci_read_config32(dev, 0x410); root_port_config_update_gbe_port(); pci_update_config8(dev, 0xe2, ~(3 << 4), (3 << 4)); if (dev->chip_info != NULL) { config_t *config = dev->chip_info; rpc.coalesce = config->pcie_port_coalesce; } } rp = root_port_number(dev); if (rp > rpc.num_ports) { printk(BIOS_ERR, "Found Root Port %d, expecting %d\n", rp, rpc.num_ports); return; } /* Read the fuse configuration and pin ownership. */ switch (rp) { case 1: rpc.strpfusecfg1 = pci_read_config32(dev, 0xfc); rpc.b0d28f0_32c = pci_read_config32(dev, 0x32c); break; case 5: rpc.strpfusecfg2 = pci_read_config32(dev, 0xfc); rpc.b0d28f4_32c = pci_read_config32(dev, 0x32c); break; case 6: rpc.b0d28f5_32c = pci_read_config32(dev, 0x32c); rpc.strpfusecfg3 = pci_read_config32(dev, 0xfc); break; default: break; } pci_update_config32(dev, 0x418, 0, 0x02000430); if (root_port_is_first(dev)) { /* * set RP0 PCICFG E2h[5:4] = 11b and E1h[6] = 1 * before configuring ASPM */ id = 0xe0 + (u8)(RCBA32(RPFN) & 0x07); pch_iobp_exec(0xE00000E0, IOBP_PCICFG_READ, id, &data, &resp); data |= ((0x30 << 16) | (0x40 << 8)); pch_iobp_exec(0xE00000E0, IOBP_PCICFG_WRITE, id, &data, &resp); } /* Cache pci device. */ rpc.ports[rp - 1] = dev; } /* Update devicetree with new Root Port function number assignment */ static void pch_pcie_device_set_func(int index, int pci_func) { device_t dev; unsigned int new_devfn; dev = rpc.ports[index]; /* Set the new PCI function field for this Root Port. */ rpc.new_rpfn &= ~RPFN_FNMASK(index); rpc.new_rpfn |= RPFN_FNSET(index, pci_func); /* Determine the new devfn for this port */ new_devfn = PCI_DEVFN(PCH_DEV_SLOT_PCIE, pci_func); if (dev->path.pci.devfn != new_devfn) { printk(BIOS_DEBUG, "PCH: PCIe map %02x.%1x -> %02x.%1x\n", PCI_SLOT(dev->path.pci.devfn), PCI_FUNC(dev->path.pci.devfn), PCI_SLOT(new_devfn), PCI_FUNC(new_devfn)); dev->path.pci.devfn = new_devfn; } } static void pcie_enable_clock_gating(void) { int i; int enabled_ports = 0; int is_broadwell = !!(cpu_family_model() == BROADWELL_FAMILY_ULT); for (i = 0; i < rpc.num_ports; i++) { device_t dev; int rp; dev = rpc.ports[i]; rp = root_port_number(dev); if (!dev->enabled) { /* Configure shared resource clock gating. */ if (rp == 1 || rp == 5 || rp == 6) pci_update_config8(dev, 0xe1, 0xc3, 0x3c); pci_update_config8(dev, 0xe2, ~(3 << 4), (3 << 4)); pci_update_config32(dev, 0x420, ~(1 << 31), (1 << 31)); /* Per-Port CLKREQ# handling. */ if (gpio_is_native(18 + rp - 1)) pci_update_config32(dev, 0x420, ~0, (3 << 29)); /* Enable static clock gating. */ if (rp == 1 && !rpc.ports[1]->enabled && !rpc.ports[2]->enabled && !rpc.ports[3]->enabled) { pci_update_config8(dev, 0xe2, ~1, 1); pci_update_config8(dev, 0xe1, 0x7f, 0x80); } else if (rp == 5 || rp == 6) { pci_update_config8(dev, 0xe2, ~1, 1); pci_update_config8(dev, 0xe1, 0x7f, 0x80); } continue; } enabled_ports++; /* Enable dynamic clock gating. */ pci_update_config8(dev, 0xe1, 0xfc, 0x03); pci_update_config8(dev, 0xe2, ~(1 << 6), (1 << 6)); pci_update_config8(dev, 0xe8, ~(3 << 2), (2 << 2)); /* Update PECR1 register. */ pci_update_config8(dev, 0xe8, ~0, 3); if (is_broadwell) { pci_update_config32(dev, 0x324, ~((1 << 5) | (1 << 14)), ((1 << 5) | (1 << 14))); } else { pci_update_config32(dev, 0x324, ~(1 << 5), (1 << 5)); } /* Per-Port CLKREQ# handling. */ if (gpio_is_native(18 + rp - 1)) /* * In addition to D28Fx PCICFG 420h[30:29] = 11b, * set 420h[17] = 0b and 420[0] = 1b for L1 SubState. */ pci_update_config32(dev, 0x420, ~0x20000, (3 << 29) | 1); /* Configure shared resource clock gating. */ if (rp == 1 || rp == 5 || rp == 6) pci_update_config8(dev, 0xe1, 0xc3, 0x3c); /* CLKREQ# VR Idle Enable */ RCBA32_OR(0x2b1c, (1 << (16 + i))); } if (!enabled_ports) pci_update_config8(rpc.ports[0], 0xe1, ~(1 << 6), (1 << 6)); } static void root_port_commit_config(void) { int i; /* If the first root port is disabled the coalesce ports. */ if (!rpc.ports[0]->enabled) rpc.coalesce = 1; /* Perform clock gating configuration. */ pcie_enable_clock_gating(); for (i = 0; i < rpc.num_ports; i++) { device_t dev; u32 reg32; int n = 0; dev = rpc.ports[i]; if (dev == NULL) { printk(BIOS_ERR, "Root Port %d device is NULL?\n", i+1); continue; } if (dev->enabled) continue; printk(BIOS_DEBUG, "%s: Disabling device\n", dev_path(dev)); /* 8.2 Configuration of PCI Express Root Ports */ pci_update_config32(dev, 0x338, ~(1 << 26), 1 << 26); do { reg32 = pci_read_config32(dev, 0x328); n++; if (((reg32 & 0xff000000) == 0x01000000) || (n > 50)) break; udelay(100); } while (1); if (n > 50) printk(BIOS_DEBUG, "%s: Timeout waiting for 328h\n", dev_path(dev)); pci_update_config32(dev, 0x408, ~(1 << 27), 1 << 27); /* Disable this device if possible */ pch_disable_devfn(dev); } if (rpc.coalesce) { int current_func; /* For all Root Ports N enabled ports get assigned the lower * PCI function number. The disabled ones get upper PCI * function numbers. */ current_func = 0; for (i = 0; i < rpc.num_ports; i++) { if (!rpc.ports[i]->enabled) continue; pch_pcie_device_set_func(i, current_func); current_func++; } /* Allocate the disabled devices' PCI function number. */ for (i = 0; i < rpc.num_ports; i++) { if (rpc.ports[i]->enabled) continue; pch_pcie_device_set_func(i, current_func); current_func++; } } printk(BIOS_SPEW, "PCH: RPFN 0x%08x -> 0x%08x\n", rpc.orig_rpfn, rpc.new_rpfn); RCBA32(RPFN) = rpc.new_rpfn; } static void root_port_mark_disable(device_t dev) { /* Mark device as disabled. */ dev->enabled = 0; /* Mark device to be hidden. */ rpc.new_rpfn |= RPFN_HIDE(PCI_FUNC(dev->path.pci.devfn)); } static void root_port_check_disable(device_t dev) { int rp; /* Device already disabled. */ if (!dev->enabled) { root_port_mark_disable(dev); return; } rp = root_port_number(dev); /* Is the GbE port mapped to this Root Port? */ if (rp == rpc.gbe_port) { root_port_mark_disable(dev); return; } /* Check Root Port Configuration. */ switch (rp) { case 2: /* Root Port 2 is disabled for all lane configurations * but config 00b (4x1 links). */ if ((rpc.strpfusecfg1 >> 14) & 0x3) { root_port_mark_disable(dev); return; } break; case 3: /* Root Port 3 is disabled in config 11b (1x4 links). */ if (((rpc.strpfusecfg1 >> 14) & 0x3) == 0x3) { root_port_mark_disable(dev); return; } break; case 4: /* Root Port 4 is disabled in configs 11b (1x4 links) * and 10b (2x2 links). */ if ((rpc.strpfusecfg1 >> 14) & 0x2) { root_port_mark_disable(dev); return; } break; } /* Check Pin Ownership. */ switch (rp) { case 1: /* Bit 0 is Root Port 1 ownership. */ if ((rpc.pin_ownership & 0x1) == 0) { root_port_mark_disable(dev); return; } break; case 2: /* Bit 2 is Root Port 2 ownership. */ if ((rpc.pin_ownership & 0x4) == 0) { root_port_mark_disable(dev); return; } break; case 6: /* Bits 7:4 are Root Port 6 pin-lane ownership. */ if ((rpc.pin_ownership & 0xf0) == 0) { root_port_mark_disable(dev); return; } break; } } static void pcie_add_0x0202000_iobp(u32 reg) { u32 reg32; reg32 = pch_iobp_read(reg); reg32 += (0x2 << 16) | (0x2 << 8); pch_iobp_write(reg, reg32); } static void pch_pcie_early(struct device *dev) { config_t *config = dev->chip_info; int do_aspm = 0; int rp = root_port_number(dev); switch (rp) { case 1: case 2: case 3: case 4: /* * Bits 31:28 of b0d28f0 0x32c register correspond to * Root Ports 4:1. */ do_aspm = !!(rpc.b0d28f0_32c & (1 << (28 + rp - 1))); break; case 5: /* * Bit 28 of b0d28f4 0x32c register correspond to * Root Ports 4:1. */ do_aspm = !!(rpc.b0d28f4_32c & (1 << 28)); break; case 6: /* * Bit 28 of b0d28f5 0x32c register correspond to * Root Ports 4:1. */ do_aspm = !!(rpc.b0d28f5_32c & (1 << 28)); break; } /* Allow ASPM to be forced on in devicetree */ if (config && (config->pcie_port_force_aspm & (1 << (rp - 1)))) do_aspm = 1; printk(BIOS_DEBUG, "PCIe Root Port %d ASPM is %sabled\n", rp, do_aspm ? "en" : "dis"); if (do_aspm) { /* Set ASPM bits in MPC2 register. */ pci_update_config32(dev, 0xd4, ~(0x3 << 2), (1 << 4) | (0x2 << 2)); /* Set unique clock exit latency in MPC register. */ pci_update_config32(dev, 0xd8, ~(0x7 << 18), (0x7 << 18)); switch (rp) { case 1: pcie_add_0x0202000_iobp(0xe9002440); break; case 2: pcie_add_0x0202000_iobp(0xe9002640); break; case 3: pcie_add_0x0202000_iobp(0xe9000840); break; case 4: pcie_add_0x0202000_iobp(0xe9000a40); break; case 5: pcie_add_0x0202000_iobp(0xe9000c40); pcie_add_0x0202000_iobp(0xe9000e40); pcie_add_0x0202000_iobp(0xe9001040); pcie_add_0x0202000_iobp(0xe9001240); break; case 6: /* Update IOBP based on lane ownership. */ if (rpc.pin_ownership & (1 << 4)) pcie_add_0x0202000_iobp(0xea002040); if (rpc.pin_ownership & (1 << 5)) pcie_add_0x0202000_iobp(0xea002240); if (rpc.pin_ownership & (1 << 6)) pcie_add_0x0202000_iobp(0xea002440); if (rpc.pin_ownership & (1 << 7)) pcie_add_0x0202000_iobp(0xea002640); break; } pci_update_config32(dev, 0x338, ~(1 << 26), 0); } /* Enable LTR in Root Port. Disable OBFF. */ pci_update_config32(dev, 0x64, ~(1 << 11) & ~(3 << 18), (1 << 11)); pci_update_config32(dev, 0x68, ~(1 << 10), (1 << 10)); pci_update_config32(dev, 0x318, ~(0xffff << 16), (0x1414 << 16)); /* Set L1 exit latency in LCAP register. */ if (!do_aspm && (pci_read_config8(dev, 0xf5) & 0x1)) pci_update_config32(dev, 0x4c, ~(0x7 << 15), (0x4 << 15)); else pci_update_config32(dev, 0x4c, ~(0x7 << 15), (0x2 << 15)); pci_update_config32(dev, 0x314, 0x0, 0x743a361b); /* Set Common Clock Exit Latency in MPC register. */ pci_update_config32(dev, 0xd8, ~(0x7 << 15), (0x3 << 15)); pci_update_config32(dev, 0x33c, ~0x00ffffff, 0x854d74); /* Set Invalid Receive Range Check Enable in MPC register. */ pci_update_config32(dev, 0xd8, ~0, (1 << 25)); pci_update_config8(dev, 0xf5, 0x0f, 0); /* Set AER Extended Cap ID to 01h and Next Cap Pointer to 200h. */ pci_update_config32(dev, 0x100, ~(1 << 29) & ~0xfffff, (1 << 29) | 0x10001); /* Set L1 Sub-State Cap ID to 1Eh and Next Cap Pointer to None. */ pci_update_config32(dev, 0x200, ~0xffff, 0x001e); pci_update_config32(dev, 0x320, ~(3 << 20) & ~(7 << 6), (1 << 20) | (3 << 6)); /* Enable Relaxed Order from Root Port. */ pci_update_config32(dev, 0x320, ~(3 << 23), (3 << 23)); if (rp == 1 || rp == 5 || rp == 6) pci_update_config8(dev, 0xf7, ~0xc, 0); /* Set EOI forwarding disable. */ pci_update_config32(dev, 0xd4, ~0, (1 << 1)); /* Read and write back write-once capability registers. */ pci_update_config32(dev, 0x34, ~0, 0); pci_update_config32(dev, 0x40, ~0, 0); pci_update_config32(dev, 0x80, ~0, 0); pci_update_config32(dev, 0x90, ~0, 0); } static void pch_pcie_init(struct device *dev) { u16 reg16; u32 reg32; printk(BIOS_DEBUG, "Initializing PCH PCIe bridge.\n"); /* Enable SERR */ reg32 = pci_read_config32(dev, PCI_COMMAND); reg32 |= PCI_COMMAND_SERR; pci_write_config32(dev, PCI_COMMAND, reg32); /* Enable Bus Master */ reg32 = pci_read_config32(dev, PCI_COMMAND); reg32 |= PCI_COMMAND_MASTER; pci_write_config32(dev, PCI_COMMAND, reg32); /* Set Cache Line Size to 0x10 */ pci_write_config8(dev, 0x0c, 0x10); reg16 = pci_read_config16(dev, 0x3e); reg16 &= ~(1 << 0); /* disable parity error response */ reg16 |= (1 << 2); /* ISA enable */ pci_write_config16(dev, 0x3e, reg16); #ifdef EVEN_MORE_DEBUG reg32 = pci_read_config32(dev, 0x20); printk(BIOS_SPEW, " MBL = 0x%08x\n", reg32); reg32 = pci_read_config32(dev, 0x24); printk(BIOS_SPEW, " PMBL = 0x%08x\n", reg32); reg32 = pci_read_config32(dev, 0x28); printk(BIOS_SPEW, " PMBU32 = 0x%08x\n", reg32); reg32 = pci_read_config32(dev, 0x2c); printk(BIOS_SPEW, " PMLU32 = 0x%08x\n", reg32); #endif /* Clear errors in status registers */ reg16 = pci_read_config16(dev, 0x06); pci_write_config16(dev, 0x06, reg16); reg16 = pci_read_config16(dev, 0x1e); pci_write_config16(dev, 0x1e, reg16); } static void pch_pcie_enable(device_t dev) { /* Add this device to the root port config structure. */ root_port_init_config(dev); /* Check to see if this Root Port should be disabled. */ root_port_check_disable(dev); /* Power Management init before enumeration */ if (dev->enabled) pch_pcie_early(dev); /* * When processing the last PCIe root port we can now * update the Root Port Function Number and Hide register. */ if (root_port_is_last(dev)) root_port_commit_config(); } static void pcie_set_subsystem(device_t dev, unsigned int vendor, unsigned int device) { /* NOTE: This is not the default position! */ if (!vendor || !device) pci_write_config32(dev, 0x94, pci_read_config32(dev, 0)); else pci_write_config32(dev, 0x94, (device << 16) | vendor); } static void pcie_set_L1_ss_max_latency(device_t dev, unsigned int off) { /* Set max snoop and non-snoop latency for Broadwell */ pci_write_config32(dev, off, 0x10031003); } static struct pci_operations pcie_ops = { .set_subsystem = pcie_set_subsystem, .set_L1_ss_latency = pcie_set_L1_ss_max_latency, }; static struct device_operations device_ops = { .read_resources = pci_bus_read_resources, .set_resources = pci_dev_set_resources, .enable_resources = pci_bus_enable_resources, .init = pch_pcie_init, .enable = pch_pcie_enable, .scan_bus = pciexp_scan_bridge, .ops_pci = &pcie_ops, }; static const unsigned short pcie_device_ids[] = { /* Lynxpoint-LP */ 0x9c10, 0x9c12, 0x9c14, 0x9c16, 0x9c18, 0x9c1a, /* WildcatPoint */ 0x9c90, 0x9c92, 0x9c94, 0x9c96, 0x9c98, 0x9c9a, 0x2448, 0 }; static const struct pci_driver pch_pcie __pci_driver = { .ops = &device_ops, .vendor = PCI_VENDOR_ID_INTEL, .devices = pcie_device_ids, };