/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include u8 systemagent_revision(void) { struct device *sa_dev = pcidev_path_on_root(SA_DEVFN_ROOT); return pci_read_config8(sa_dev, PCI_REVISION_ID); } static int get_pcie_bar(struct device *dev, unsigned int index, u32 *base, u32 *len) { u32 pciexbar_reg; *base = 0; *len = 0; pciexbar_reg = pci_read_config32(dev, index); if (!(pciexbar_reg & (1 << 0))) return 0; switch ((pciexbar_reg >> 1) & 3) { case 0: // 256MB *base = pciexbar_reg & ((1 << 31)|(1 << 30)|(1 << 29)| (1 << 28)); *len = 256 * 1024 * 1024; return 1; case 1: // 128M *base = pciexbar_reg & ((1 << 31)|(1 << 30)|(1 << 29)| (1 << 28)|(1 << 27)); *len = 128 * 1024 * 1024; return 1; case 2: // 64M *base = pciexbar_reg & ((1 << 31)|(1 << 30)|(1 << 29)| (1 << 28)|(1 << 27)|(1 << 26)); *len = 64 * 1024 * 1024; return 1; } return 0; } static int get_bar(struct device *dev, unsigned int index, u32 *base, u32 *len) { u32 bar; bar = pci_read_config32(dev, index); /* If not enabled don't report it. */ if (!(bar & 0x1)) return 0; /* Knock down the enable bit. */ *base = bar & ~1; return 1; } /* There are special BARs that actually are programmed in the MCHBAR. These * Intel special features, but they do consume resources that need to be * accounted for. */ static int get_bar_in_mchbar(struct device *dev, unsigned int index, u32 *base, u32 *len) { u32 bar; bar = mchbar_read32(index); /* If not enabled don't report it. */ if (!(bar & 0x1)) return 0; /* Knock down the enable bit. */ *base = bar & ~1; return 1; } struct fixed_mmio_descriptor { unsigned int index; u32 size; int (*get_resource)(struct device *dev, unsigned int index, u32 *base, u32 *size); const char *description; }; struct fixed_mmio_descriptor mc_fixed_resources[] = { { PCIEXBAR, 0, get_pcie_bar, "PCIEXBAR" }, { MCHBAR, MCH_BASE_SIZE, get_bar, "MCHBAR" }, { DMIBAR, DMI_BASE_SIZE, get_bar, "DMIBAR" }, { EPBAR, EP_BASE_SIZE, get_bar, "EPBAR" }, { GDXCBAR, GDXC_BASE_SIZE, get_bar_in_mchbar, "GDXCBAR" }, { EDRAMBAR, EDRAM_BASE_SIZE, get_bar_in_mchbar, "EDRAMBAR" }, }; /* * Add all known fixed MMIO ranges that hang off the host bridge/memory * controller device. */ static void mc_add_fixed_mmio_resources(struct device *dev) { int i; for (i = 0; i < ARRAY_SIZE(mc_fixed_resources); i++) { u32 base; u32 size; struct resource *resource; unsigned int index; size = mc_fixed_resources[i].size; index = mc_fixed_resources[i].index; if (!mc_fixed_resources[i].get_resource(dev, index, &base, &size)) continue; resource = new_resource(dev, mc_fixed_resources[i].index); resource->flags = IORESOURCE_MEM | IORESOURCE_FIXED | IORESOURCE_STORED | IORESOURCE_RESERVE | IORESOURCE_ASSIGNED; resource->base = base; resource->size = size; printk(BIOS_DEBUG, "%s: Adding %s @ %x 0x%08lx-0x%08lx.\n", __func__, mc_fixed_resources[i].description, index, (unsigned long)base, (unsigned long)(base + size - 1)); } } /* Host Memory Map: * * +--------------------------+ TOUUD * | | * +--------------------------+ 4GiB * | PCI Address Space | * +--------------------------+ TOLUD (also maps into MC address space) * | iGD | * +--------------------------+ BDSM * | GTT | * +--------------------------+ BGSM * | TSEG | * +--------------------------+ TSEGMB * | Usage DRAM | * +--------------------------+ 0 * * Some of the base registers above can be equal making the size of those * regions 0. The reason is because the memory controller internally subtracts * the base registers from each other to determine sizes of the regions. In * other words, the memory map is in a fixed order no matter what. */ struct map_entry { int reg; int is_64_bit; int is_limit; const char *description; }; static void read_map_entry(struct device *dev, struct map_entry *entry, uint64_t *result) { uint64_t value; uint64_t mask; /* All registers are on a 1MiB granularity. */ mask = ((1ULL<<20)-1); mask = ~mask; value = 0; if (entry->is_64_bit) { value = pci_read_config32(dev, entry->reg + 4); value <<= 32; } value |= pci_read_config32(dev, entry->reg); value &= mask; if (entry->is_limit) value |= ~mask; *result = value; } #define MAP_ENTRY(reg_, is_64_, is_limit_, desc_) \ { \ .reg = reg_, \ .is_64_bit = is_64_, \ .is_limit = is_limit_, \ .description = desc_, \ } #define MAP_ENTRY_BASE_64(reg_, desc_) \ MAP_ENTRY(reg_, 1, 0, desc_) #define MAP_ENTRY_LIMIT_64(reg_, desc_) \ MAP_ENTRY(reg_, 1, 1, desc_) #define MAP_ENTRY_BASE_32(reg_, desc_) \ MAP_ENTRY(reg_, 0, 0, desc_) enum { TOM_REG, TOUUD_REG, MESEG_BASE_REG, MESEG_LIMIT_REG, REMAP_BASE_REG, REMAP_LIMIT_REG, TOLUD_REG, BGSM_REG, BDSM_REG, TSEG_REG, // Must be last. NUM_MAP_ENTRIES }; static struct map_entry memory_map[NUM_MAP_ENTRIES] = { [TOM_REG] = MAP_ENTRY_BASE_64(TOM, "TOM"), [TOUUD_REG] = MAP_ENTRY_BASE_64(TOUUD, "TOUUD"), [MESEG_BASE_REG] = MAP_ENTRY_BASE_64(MESEG_BASE, "MESEG_BASE"), [MESEG_LIMIT_REG] = MAP_ENTRY_LIMIT_64(MESEG_LIMIT, "MESEG_LIMIT"), [REMAP_BASE_REG] = MAP_ENTRY_BASE_64(REMAPBASE, "REMAP_BASE"), [REMAP_LIMIT_REG] = MAP_ENTRY_LIMIT_64(REMAPLIMIT, "REMAP_LIMIT"), [TOLUD_REG] = MAP_ENTRY_BASE_32(TOLUD, "TOLUD"), [BDSM_REG] = MAP_ENTRY_BASE_32(BDSM, "BDSM"), [BGSM_REG] = MAP_ENTRY_BASE_32(BGSM, "BGSM"), [TSEG_REG] = MAP_ENTRY_BASE_32(TSEG, "TSEGMB"), }; static void mc_read_map_entries(struct device *dev, uint64_t *values) { int i; for (i = 0; i < NUM_MAP_ENTRIES; i++) read_map_entry(dev, &memory_map[i], &values[i]); } static void mc_report_map_entries(struct device *dev, uint64_t *values) { int i; for (i = 0; i < NUM_MAP_ENTRIES; i++) { printk(BIOS_DEBUG, "MC MAP: %s: 0x%llx\n", memory_map[i].description, values[i]); } /* One can validate the BDSM and BGSM against the GGC. */ printk(BIOS_DEBUG, "MC MAP: GGC: 0x%x\n", pci_read_config16(dev, GGC)); } static void mc_add_dram_resources(struct device *dev, int *resource_cnt) { unsigned long base_k, size_k; unsigned long touud_k; unsigned long index; struct resource *resource; uint64_t mc_values[NUM_MAP_ENTRIES]; unsigned long dpr_size = 0; u32 dpr_reg; /* Read in the MAP registers and report their values. */ mc_read_map_entries(dev, &mc_values[0]); mc_report_map_entries(dev, &mc_values[0]); /* * DMA Protected Range can be reserved below TSEG for PCODE patch * or TXT/Boot Guard related data. Rather than report a base address * the DPR register reports the TOP of the region, which is the same * as TSEG base. The region size is reported in MiB in bits 11:4. */ dpr_reg = pci_read_config32(dev, DPR); if (dpr_reg & DPR_EPM) { dpr_size = (dpr_reg & DPR_SIZE_MASK) << 16; printk(BIOS_INFO, "DPR SIZE: 0x%lx\n", dpr_size); } /* * These are the host memory ranges that should be added: * - 0 -> 0xa0000: cacheable * - 0xc0000 -> TSEG : cacheable * - TESG -> BGSM: cacheable with standard MTRRs and reserved * - BGSM -> TOLUD: not cacheable with standard MTRRs and reserved * - 4GiB -> TOUUD: cacheable * * The default SMRAM space is reserved so that the range doesn't * have to be saved during S3 Resume. Once marked reserved the OS * cannot use the memory. This is a bit of an odd place to reserve * the region, but the CPU devices don't have dev_ops->read_resources() * called on them. * * The range 0xa0000 -> 0xc0000 does not have any resources * associated with it to handle legacy VGA memory. If this range * is not omitted the mtrr code will setup the area as cacheable * causing VGA access to not work. * * The TSEG region is mapped as cacheable so that one can perform * SMRAM relocation faster. Once the SMRR is enabled the SMRR takes * precedence over the existing MTRRs covering this region. * * It should be noted that cacheable entry types need to be added in * order. The reason is that the current MTRR code assumes this and * falls over itself if it isn't. * * The resource index starts low and should not meet or exceed * PCI_BASE_ADDRESS_0. */ index = *resource_cnt; /* 0 - > 0xa0000 */ base_k = 0; size_k = (0xa0000 >> 10) - base_k; ram_resource(dev, index++, base_k, size_k); /* 0xc0000 -> TSEG - DPR */ base_k = 0xc0000 >> 10; size_k = (unsigned long)(mc_values[TSEG_REG] >> 10) - base_k; size_k -= dpr_size >> 10; ram_resource(dev, index++, base_k, size_k); /* TSEG - DPR -> BGSM */ resource = new_resource(dev, index++); resource->base = mc_values[TSEG_REG] - dpr_size; resource->size = mc_values[BGSM_REG] - resource->base; resource->flags = IORESOURCE_MEM | IORESOURCE_FIXED | IORESOURCE_STORED | IORESOURCE_RESERVE | IORESOURCE_ASSIGNED | IORESOURCE_CACHEABLE; /* BGSM -> TOLUD */ resource = new_resource(dev, index++); resource->base = mc_values[BGSM_REG]; resource->size = mc_values[TOLUD_REG] - resource->base; resource->flags = IORESOURCE_MEM | IORESOURCE_FIXED | IORESOURCE_STORED | IORESOURCE_RESERVE | IORESOURCE_ASSIGNED; /* 4GiB -> TOUUD */ base_k = 4096 * 1024; /* 4GiB */ touud_k = mc_values[TOUUD_REG] >> 10; size_k = touud_k - base_k; if (touud_k > base_k) ram_resource(dev, index++, base_k, size_k); /* Reserve everything between A segment and 1MB: * * 0xa0000 - 0xbffff: legacy VGA * 0xc0000 - 0xfffff: RAM */ mmio_resource(dev, index++, (0xa0000 >> 10), (0xc0000 - 0xa0000) >> 10); reserved_ram_resource(dev, index++, (0xc0000 >> 10), (0x100000 - 0xc0000) >> 10); *resource_cnt = index; } static void systemagent_read_resources(struct device *dev) { int index = 0; const bool vtd_capable = !(pci_read_config32(dev, CAPID0_A) & VTD_DISABLE); /* Read standard PCI resources. */ pci_dev_read_resources(dev); /* Add all fixed MMIO resources. */ mc_add_fixed_mmio_resources(dev); /* Add VT-d MMIO resources if capable */ if (vtd_capable) { mmio_resource(dev, index++, GFXVT_BASE_ADDRESS / KiB, GFXVT_BASE_SIZE / KiB); mmio_resource(dev, index++, VTVC0_BASE_ADDRESS / KiB, VTVC0_BASE_SIZE / KiB); } /* Calculate and add DRAM resources. */ mc_add_dram_resources(dev, &index); } static void systemagent_init(struct device *dev) { /* Enable Power Aware Interrupt Routing. */ mchbar_clrsetbits8(MCH_PAIR, 0x7, 0x4); /* Clear 2:0, set Fixed Priority */ /* * Set bits 0+1 of BIOS_RESET_CPL to indicate to the CPU * that BIOS has initialized memory and power management */ mchbar_setbits8(BIOS_RESET_CPL, 3); printk(BIOS_DEBUG, "Set BIOS_RESET_CPL\n"); /* Configure turbo power limits 1ms after reset complete bit */ mdelay(1); set_power_limits(28); } static struct device_operations systemagent_ops = { .read_resources = systemagent_read_resources, .acpi_fill_ssdt = generate_cpu_entries, .set_resources = pci_dev_set_resources, .enable_resources = pci_dev_enable_resources, .init = systemagent_init, .ops_pci = &pci_dev_ops_pci, }; static const unsigned short systemagent_ids[] = { 0x0a04, /* Haswell ULT */ 0x1604, /* Broadwell-U/Y */ 0x1610, /* Broadwell-H Desktop */ 0x1614, /* Broadwell-H Mobile */ 0 }; static const struct pci_driver systemagent_driver __pci_driver = { .ops = &systemagent_ops, .vendor = PCI_VID_INTEL, .devices = systemagent_ids }; static struct device_operations pci_domain_ops = { .read_resources = &pci_domain_read_resources, .set_resources = &pci_domain_set_resources, .scan_bus = &pci_domain_scan_bus, #if CONFIG(HAVE_ACPI_TABLES) .write_acpi_tables = &northbridge_write_acpi_tables, #endif }; static struct device_operations cpu_bus_ops = { .read_resources = noop_read_resources, .set_resources = noop_set_resources, .init = mp_cpu_bus_init, }; static void broadwell_enable(struct device *dev) { /* Set the operations if it is a special bus type */ if (dev->path.type == DEVICE_PATH_DOMAIN) { dev->ops = &pci_domain_ops; } else if (dev->path.type == DEVICE_PATH_CPU_CLUSTER) { dev->ops = &cpu_bus_ops; } } static void broadwell_init_pre_device(void *chip_info) { broadwell_run_reference_code(); } struct chip_operations soc_intel_broadwell_ops = { CHIP_NAME("Intel Broadwell") .enable_dev = &broadwell_enable, .init = &broadwell_init_pre_device, };