/* * This file is part of the coreboot project. * * Copyright (C) 2013 Google Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <stdint.h> #include <stdlib.h> #include <arch/io.h> #include <console/console.h> #include <cpu/x86/cache.h> #include <cpu/x86/smm.h> #include <device/pci_def.h> #include <elog.h> #include <halt.h> #include <spi-generic.h> #include <soc/iosf.h> #include <soc/pci_devs.h> #include <soc/pmc.h> #include <soc/nvs.h> /* GNVS needs to be set by coreboot initiating a software SMI. */ static global_nvs_t *gnvs; static int smm_initialized; int southbridge_io_trap_handler(int smif) { switch (smif) { case 0x32: printk(BIOS_DEBUG, "OS Init\n"); /* gnvs->smif: * On success, the IO Trap Handler returns 0 * On failure, the IO Trap Handler returns a value != 0 */ gnvs->smif = 0; return 1; /* IO trap handled */ } /* Not handled */ return 0; } void southbridge_smi_set_eos(void) { enable_smi(EOS); } global_nvs_t *smm_get_gnvs(void) { return gnvs; } static void busmaster_disable_on_bus(int bus) { int slot, func; unsigned int val; unsigned char hdr; for (slot = 0; slot < 0x20; slot++) { for (func = 0; func < 8; func++) { u32 reg32; pci_devfn_t dev = PCI_DEV(bus, slot, func); val = pci_read_config32(dev, PCI_VENDOR_ID); if (val == 0xffffffff || val == 0x00000000 || val == 0x0000ffff || val == 0xffff0000) continue; /* Disable Bus Mastering for this one device */ reg32 = pci_read_config32(dev, PCI_COMMAND); reg32 &= ~PCI_COMMAND_MASTER; pci_write_config32(dev, PCI_COMMAND, reg32); /* If this is a bridge, then follow it. */ hdr = pci_read_config8(dev, PCI_HEADER_TYPE); hdr &= 0x7f; if (hdr == PCI_HEADER_TYPE_BRIDGE || hdr == PCI_HEADER_TYPE_CARDBUS) { unsigned int buses; buses = pci_read_config32(dev, PCI_PRIMARY_BUS); busmaster_disable_on_bus((buses >> 8) & 0xff); } } } } static void southbridge_smi_sleep(void) { uint32_t reg32; uint8_t slp_typ; uint16_t pmbase = get_pmbase(); /* First, disable further SMIs */ disable_smi(SLP_SMI_EN); /* Figure out SLP_TYP */ reg32 = inl(pmbase + PM1_CNT); printk(BIOS_SPEW, "SMI#: SLP = 0x%08x\n", reg32); slp_typ = acpi_sleep_from_pm1(reg32); /* Do any mainboard sleep handling */ mainboard_smi_sleep(slp_typ); #if IS_ENABLED(CONFIG_ELOG_GSMI) /* Log S3, S4, and S5 entry */ if (slp_typ >= ACPI_S3) elog_add_event_byte(ELOG_TYPE_ACPI_ENTER, slp_typ); #endif /* Next, do the deed. */ switch (slp_typ) { case ACPI_S0: printk(BIOS_DEBUG, "SMI#: Entering S0 (On)\n"); break; case ACPI_S1: printk(BIOS_DEBUG, "SMI#: Entering S1 (Assert STPCLK#)\n"); break; case ACPI_S3: printk(BIOS_DEBUG, "SMI#: Entering S3 (Suspend-To-RAM)\n"); /* Invalidate the cache before going to S3 */ wbinvd(); break; case ACPI_S4: printk(BIOS_DEBUG, "SMI#: Entering S4 (Suspend-To-Disk)\n"); break; case ACPI_S5: printk(BIOS_DEBUG, "SMI#: Entering S5 (Soft Power off)\n"); /* Disable all GPE */ disable_all_gpe(); /* also iterates over all bridges on bus 0 */ busmaster_disable_on_bus(0); break; default: printk(BIOS_DEBUG, "SMI#: ERROR: SLP_TYP reserved\n"); break; } /* Write back to the SLP register to cause the originally intended * event again. We need to set BIT13 (SLP_EN) though to make the * sleep happen. */ enable_pm1_control(SLP_EN); /* Make sure to stop executing code here for S3/S4/S5 */ if (slp_typ >= ACPI_S3) halt(); /* In most sleep states, the code flow of this function ends at * the line above. However, if we entered sleep state S1 and wake * up again, we will continue to execute code in this function. */ reg32 = inl(pmbase + PM1_CNT); if (reg32 & SCI_EN) { /* The OS is not an ACPI OS, so we set the state to S0 */ disable_pm1_control(SLP_EN | SLP_TYP); } } /* * Look for Synchronous IO SMI and use save state from that * core in case we are not running on the same core that * initiated the IO transaction. */ static em64t100_smm_state_save_area_t *smi_apmc_find_state_save(uint8_t cmd) { em64t100_smm_state_save_area_t *state; int node; /* Check all nodes looking for the one that issued the IO */ for (node = 0; node < CONFIG_MAX_CPUS; node++) { state = smm_get_save_state(node); /* Check for Synchronous IO (bit0==1) */ if (!(state->io_misc_info & (1 << 0))) continue; /* Make sure it was a write (bit4==0) */ if (state->io_misc_info & (1 << 4)) continue; /* Check for APMC IO port */ if (((state->io_misc_info >> 16) & 0xff) != APM_CNT) continue; /* Check AX against the requested command */ if ((state->rax & 0xff) != cmd) continue; return state; } return NULL; } #if IS_ENABLED(CONFIG_ELOG_GSMI) static void southbridge_smi_gsmi(void) { u32 *ret, *param; uint8_t sub_command; em64t100_smm_state_save_area_t *io_smi = smi_apmc_find_state_save(APM_CNT_ELOG_GSMI); if (!io_smi) return; /* Command and return value in EAX */ ret = (u32*)&io_smi->rax; sub_command = (uint8_t)(*ret >> 8); /* Parameter buffer in EBX */ param = (u32*)&io_smi->rbx; /* drivers/elog/gsmi.c */ *ret = gsmi_exec(sub_command, param); } #endif static void finalize(void) { static int finalize_done; if (finalize_done) { printk(BIOS_DEBUG, "SMM already finalized.\n"); return; } finalize_done = 1; #if IS_ENABLED(CONFIG_SPI_FLASH_SMM) /* Re-init SPI driver to handle locked BAR */ spi_init(); #endif } /* * soc_legacy: A payload (Depthcharge) has indicated that the * legacy payload (SeaBIOS) is being loaded. Switch devices that are * in ACPI mode to PCI mode so that non-ACPI drivers may work. * */ static void soc_legacy(void) { u32 reg32; /* LPE Device */ if (gnvs->dev.lpe_en) { reg32 = iosf_port58_read(LPE_PCICFGCTR1); reg32 &= ~(LPE_PCICFGCTR1_PCI_CFG_DIS | LPE_PCICFGCTR1_ACPI_INT_EN); iosf_port58_write(LPE_PCICFGCTR1, reg32); } /* SCC Devices */ #define SCC_ACPI_MODE_DISABLE(name_) \ do { if (gnvs->dev.scc_en[SCC_NVS_ ## name_]) { \ reg32 = iosf_scc_read(SCC_ ## name_ ## _CTL); \ reg32 &= ~(SCC_CTL_PCI_CFG_DIS | SCC_CTL_ACPI_INT_EN); \ iosf_scc_write(SCC_ ## name_ ## _CTL, reg32); \ } } while (0) SCC_ACPI_MODE_DISABLE(MMC); SCC_ACPI_MODE_DISABLE(SD); SCC_ACPI_MODE_DISABLE(SDIO); /* LPSS Devices */ #define LPSS_ACPI_MODE_DISABLE(name_) \ do { if (gnvs->dev.lpss_en[LPSS_NVS_ ## name_]) { \ reg32 = iosf_lpss_read(LPSS_ ## name_ ## _CTL); \ reg32 &= ~LPSS_CTL_PCI_CFG_DIS | ~LPSS_CTL_ACPI_INT_EN; \ iosf_lpss_write(LPSS_ ## name_ ## _CTL, reg32); \ } } while (0) LPSS_ACPI_MODE_DISABLE(SIO_DMA1); LPSS_ACPI_MODE_DISABLE(I2C1); LPSS_ACPI_MODE_DISABLE(I2C2); LPSS_ACPI_MODE_DISABLE(I2C3); LPSS_ACPI_MODE_DISABLE(I2C4); LPSS_ACPI_MODE_DISABLE(I2C5); LPSS_ACPI_MODE_DISABLE(I2C6); LPSS_ACPI_MODE_DISABLE(I2C7); LPSS_ACPI_MODE_DISABLE(SIO_DMA2); LPSS_ACPI_MODE_DISABLE(PWM1); LPSS_ACPI_MODE_DISABLE(PWM2); LPSS_ACPI_MODE_DISABLE(HSUART1); LPSS_ACPI_MODE_DISABLE(HSUART2); LPSS_ACPI_MODE_DISABLE(SPI); } static void southbridge_smi_apmc(void) { uint8_t reg8; em64t100_smm_state_save_area_t *state; /* Emulate B2 register as the FADT / Linux expects it */ reg8 = inb(APM_CNT); switch (reg8) { case APM_CNT_CST_CONTROL: /* Calling this function seems to cause * some kind of race condition in Linux * and causes a kernel oops */ printk(BIOS_DEBUG, "C-state control\n"); break; case APM_CNT_PST_CONTROL: /* Calling this function seems to cause * some kind of race condition in Linux * and causes a kernel oops */ printk(BIOS_DEBUG, "P-state control\n"); break; case APM_CNT_ACPI_DISABLE: disable_pm1_control(SCI_EN); printk(BIOS_DEBUG, "SMI#: ACPI disabled.\n"); break; case APM_CNT_ACPI_ENABLE: enable_pm1_control(SCI_EN); printk(BIOS_DEBUG, "SMI#: ACPI enabled.\n"); break; case APM_CNT_GNVS_UPDATE: if (smm_initialized) { printk(BIOS_DEBUG, "SMI#: SMM structures already initialized!\n"); return; } state = smi_apmc_find_state_save(reg8); if (state) { /* EBX in the state save contains the GNVS pointer */ gnvs = (global_nvs_t *)((uint32_t)state->rbx); smm_initialized = 1; printk(BIOS_DEBUG, "SMI#: Setting GNVS to %p\n", gnvs); } break; #if IS_ENABLED(CONFIG_ELOG_GSMI) case APM_CNT_ELOG_GSMI: southbridge_smi_gsmi(); break; #endif case APM_CNT_FINALIZE: finalize(); break; case APM_CNT_LEGACY: soc_legacy(); break; } mainboard_smi_apmc(reg8); } static void southbridge_smi_pm1(void) { uint16_t pm1_sts = clear_pm1_status(); /* While OSPM is not active, poweroff immediately * on a power button event. */ if (pm1_sts & PWRBTN_STS) { // power button pressed #if IS_ENABLED(CONFIG_ELOG_GSMI) elog_add_event(ELOG_TYPE_POWER_BUTTON); #endif disable_pm1_control(-1UL); enable_pm1_control(SLP_EN | (SLP_TYP_S5 << SLP_TYP_SHIFT)); } } static void southbridge_smi_gpe0(void) { clear_gpe_status(); } static void southbridge_smi_tco(void) { uint32_t tco_sts = clear_tco_status(); /* Any TCO event? */ if (!tco_sts) return; if (tco_sts & TCO_TIMEOUT) { /* TIMEOUT */ /* Handle TCO timeout */ printk(BIOS_DEBUG, "TCO Timeout.\n"); } } static void southbridge_smi_periodic(void) { uint32_t reg32; reg32 = inl(get_pmbase() + SMI_EN); /* Are periodic SMIs enabled? */ if ((reg32 & PERIODIC_EN) == 0) return; printk(BIOS_DEBUG, "Periodic SMI.\n"); } typedef void (*smi_handler_t)(void); static const smi_handler_t southbridge_smi[32] = { NULL, // [0] reserved NULL, // [1] reserved NULL, // [2] BIOS_STS NULL, // [3] LEGACY_USB_STS southbridge_smi_sleep, // [4] SLP_SMI_STS southbridge_smi_apmc, // [5] APM_STS NULL, // [6] SWSMI_TMR_STS NULL, // [7] reserved southbridge_smi_pm1, // [8] PM1_STS southbridge_smi_gpe0, // [9] GPE0_STS NULL, // [10] reserved NULL, // [11] reserved NULL, // [12] reserved southbridge_smi_tco, // [13] TCO_STS southbridge_smi_periodic, // [14] PERIODIC_STS NULL, // [15] SERIRQ_SMI_STS NULL, // [16] SMBUS_SMI_STS NULL, // [17] LEGACY_USB2_STS NULL, // [18] INTEL_USB2_STS NULL, // [19] reserved NULL, // [20] PCI_EXP_SMI_STS NULL, // [21] reserved NULL, // [22] reserved NULL, // [23] reserved NULL, // [24] reserved NULL, // [25] reserved NULL, // [26] SPI_STS NULL, // [27] reserved NULL, // [28] PUNIT NULL, // [29] GUNIT NULL, // [30] reserved NULL // [31] reserved }; void southbridge_smi_handler(void) { int i; uint32_t smi_sts; /* We need to clear the SMI status registers, or we won't see what's * happening in the following calls. */ smi_sts = clear_smi_status(); /* Call SMI sub handler for each of the status bits */ for (i = 0; i < ARRAY_SIZE(southbridge_smi); i++) { if (!(smi_sts & (1 << i))) continue; if (southbridge_smi[i] != NULL) { southbridge_smi[i](); } else { printk(BIOS_DEBUG, "SMI_STS[%d] occurred, but no " "handler available.\n", i); } } /* The GPIO SMI events do not have a status bit in SMI_STS. Therefore, * these events need to be cleared and checked unconditionally. */ mainboard_smi_gpi(clear_alt_status()); }