/* SPDX-License-Identifier: GPL-2.0-or-later */ #define __SIMPLE_DEVICE__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "chip.h" uint8_t *pmc_mmio_regs(void) { return (void *)(uintptr_t)PCH_PWRM_BASE_ADDRESS; } uintptr_t soc_read_pmc_base(void) { return (uintptr_t)pmc_mmio_regs(); } uint32_t *soc_pmc_etr_addr(void) { return (uint32_t *)(soc_read_pmc_base() + ETR); } const char *const *soc_smi_sts_array(size_t *a) { static const char *const smi_sts_bits[] = { [BIOS_STS_BIT] = "BIOS", [LEGACY_USB_STS_BIT] = "LEGACY USB", [SMI_ON_SLP_EN_STS_BIT] = "SLP_SMI", [APM_STS_BIT] = "APM", [SWSMI_TMR_STS_BIT] = "SWSMI_TMR", [PM1_STS_BIT] = "PM1", [GPE0_STS_BIT] = "GPE0 (reserved)", [GPIO_STS_BIT] = "GPIO_SMI", [GPIO_UNLOCK_SMI_STS_BIT] = "GPIO_UNLOCK_SSMI", [MC_SMI_STS_BIT] = "MCSMI", [TCO_STS_BIT] = "TCO", [PERIODIC_STS_BIT] = "PERIODIC", [SERIRQ_SMI_STS_BIT] = "SERIRQ", [SMBUS_SMI_STS_BIT] = "SMBUS_SMI", [XHCI_SMI_STS_BIT] = "XHCI", [HSMBUS_SMI_STS_BIT] = "HOST_SMBUS", [SCS_SMI_STS_BIT] = "SCS", [PCI_EXP_SMI_STS_BIT] = "PCI_EXP_SMI", [SCC2_SMI_STS_BIT] = "SCC2", [SPI_SSMI_STS_BIT] = "SPI_SSMI", [SPI_SMI_STS_BIT] = "SPI", [PMC_OCP_SMI_STS_BIT] = "OCP_CSE", }; *a = ARRAY_SIZE(smi_sts_bits); return smi_sts_bits; } /* * For APL/GLK this check for power button status if nothing else * is indicating an SMI and SMIs aren't turned into SCIs. * Apparently, there is no PM1 status bit in the SMI status * register. That makes things difficult for * determining if the power button caused an SMI. */ uint32_t soc_get_smi_status(uint32_t generic_sts) { if (generic_sts == 0 && !(pmc_read_pm1_control() & SCI_EN)) { uint16_t pm1_sts = inw(ACPI_BASE_ADDRESS + PM1_STS); /* Fake PM1 status bit if power button pressed. */ if (pm1_sts & PWRBTN_STS) generic_sts |= (1 << PM1_STS_BIT); } /* * GPE0_STS is reserved in APL/GLK datasheets. For compatibility * with common code, mask it out so that it is always zero. */ return generic_sts & ~(1 << GPE0_STS_BIT); } const char *const *soc_tco_sts_array(size_t *a) { static const char *const tco_sts_bits[] = { [3] = "TIMEOUT", [17] = "SECOND_TO", }; *a = ARRAY_SIZE(tco_sts_bits); return tco_sts_bits; } const char *const *soc_std_gpe_sts_array(size_t *a) { static const char *const gpe_sts_bits[] = { [0] = "PCIE_SCI", [2] = "SWGPE", [3] = "PCIE_WAKE0", [4] = "PUNIT", [6] = "PCIE_WAKE1", [7] = "PCIE_WAKE2", [8] = "PCIE_WAKE3", [9] = "PCI_EXP", [10] = "BATLOW", [11] = "CSE_PME", [12] = "XDCI_PME", [13] = "XHCI_PME", [14] = "AVS_PME", [15] = "GPIO_TIER1_SCI", [16] = "SMB_WAK", [17] = "SATA_PME", }; *a = ARRAY_SIZE(gpe_sts_bits); return gpe_sts_bits; } void soc_clear_pm_registers(uintptr_t pmc_bar) { uint32_t gen_pmcon1; gen_pmcon1 = read32p(pmc_bar + GEN_PMCON1); /* Clear the status bits. The RPS field is cleared on a 0 write. */ write32p(pmc_bar + GEN_PMCON1, gen_pmcon1 & ~RPS); } void soc_get_gpi_gpe_configs(uint8_t *dw0, uint8_t *dw1, uint8_t *dw2) { DEVTREE_CONST struct soc_intel_apollolake_config *config; config = config_of_soc(); /* Assign to out variable */ *dw0 = config->gpe0_dw1; *dw1 = config->gpe0_dw2; *dw2 = config->gpe0_dw3; } void soc_fill_power_state(struct chipset_power_state *ps) { uintptr_t pmc_bar0 = soc_read_pmc_base(); ps->tco1_sts = tco_read_reg(TCO1_STS); ps->tco2_sts = tco_read_reg(TCO2_STS); ps->prsts = read32p(pmc_bar0 + PRSTS); ps->gen_pmcon1 = read32p(pmc_bar0 + GEN_PMCON1); ps->gen_pmcon2 = read32p(pmc_bar0 + GEN_PMCON2); ps->gen_pmcon3 = read32p(pmc_bar0 + GEN_PMCON3); printk(BIOS_DEBUG, "prsts: %08x\n", ps->prsts); printk(BIOS_DEBUG, "tco_sts: %04x %04x\n", ps->tco1_sts, ps->tco2_sts); printk(BIOS_DEBUG, "gen_pmcon1: %08x gen_pmcon2: %08x gen_pmcon3: %08x\n", ps->gen_pmcon1, ps->gen_pmcon2, ps->gen_pmcon3); } /* Return 0, 3, or 5 to indicate the previous sleep state. */ int soc_prev_sleep_state(const struct chipset_power_state *ps, int prev_sleep_state) { /* WAK_STS bit will not be set when waking from G3 state */ if (!(ps->pm1_sts & WAK_STS) && (ps->gen_pmcon1 & COLD_BOOT_STS)) prev_sleep_state = ACPI_S5; return prev_sleep_state; } static int rtc_failed(uint32_t gen_pmcon1) { return !!(gen_pmcon1 & RPS); } int soc_get_rtc_failed(void) { const struct chipset_power_state *ps; if (acpi_fetch_pm_state(&ps, PS_CLAIMER_RTC) < 0) return 1; return rtc_failed(ps->gen_pmcon1); } int vbnv_cmos_failed(void) { uintptr_t pmc_bar = soc_read_pmc_base(); uint32_t gen_pmcon1 = read32p(pmc_bar + GEN_PMCON1); int rtc_failure = rtc_failed(gen_pmcon1); if (rtc_failure) { printk(BIOS_INFO, "RTC failed!\n"); /* We do not want to write 1 to clear-1 bits. Set them to 0. */ gen_pmcon1 &= ~GEN_PMCON1_CLR1_BITS; /* RPS is write 0 to clear. */ gen_pmcon1 &= ~RPS; write32p(pmc_bar + GEN_PMCON1, gen_pmcon1); } return rtc_failure; } /* STM Support */ uint16_t get_pmbase(void) { return (uint16_t)ACPI_BASE_ADDRESS; } void pmc_soc_set_afterg3_en(const bool on) { const uintptr_t gen_pmcon1 = soc_read_pmc_base() + GEN_PMCON1; uint32_t reg32; reg32 = read32p(gen_pmcon1); if (on) reg32 &= ~SLEEP_AFTER_POWER_FAIL; else reg32 |= SLEEP_AFTER_POWER_FAIL; write32p(gen_pmcon1, reg32); }