/* SPDX-License-Identifier: GPL-2.0-or-later */ #include <acpi/acpi.h> #include <assert.h> #include <console/console.h> #include "chip.h" #include <cpu/cpu.h> #include <cpu/x86/mp.h> #include <cpu/intel/microcode.h> #include <cpu/intel/turbo.h> #include <cpu/intel/common/common.h> #include <cpu/x86/msr.h> #include <cpu/x86/mtrr.h> #include <cpu/x86/smm.h> #include <cpu/intel/em64t100_save_state.h> #include <cpu/intel/smm_reloc.h> #include <device/device.h> #include <device/pci.h> #include <fsp/api.h> #include <intelblocks/cpulib.h> #include <intelblocks/fast_spi.h> #include <intelblocks/mp_init.h> #include <intelblocks/msr.h> #include <intelblocks/sgx.h> #include <reg_script.h> #include <soc/cpu.h> #include <soc/iomap.h> #include <soc/pci_devs.h> #include <soc/pm.h> #include <types.h> static const struct reg_script core_msr_script[] = { #if !CONFIG(SOC_INTEL_GEMINILAKE) /* Enable C-state and IO/MWAIT redirect */ REG_MSR_WRITE(MSR_PKG_CST_CONFIG_CONTROL, (PKG_C_STATE_LIMIT_C2_MASK | CORE_C_STATE_LIMIT_C10_MASK | IO_MWAIT_REDIRECT_MASK | CST_CFG_LOCK_MASK)), /* Power Management I/O base address for I/O trapping to C-states */ REG_MSR_WRITE(MSR_PMG_IO_CAPTURE_BASE, (ACPI_PMIO_CST_REG | (PMG_IO_BASE_CST_RNG_BLK_SIZE << 16))), /* Disable support for MONITOR and MWAIT instructions */ REG_MSR_RMW(IA32_MISC_ENABLE, ~MONITOR_MWAIT_DIS_MASK, 0), #endif /* Disable C1E */ REG_MSR_RMW(MSR_POWER_CTL, ~POWER_CTL_C1E_MASK, 0), REG_SCRIPT_END }; bool cpu_soc_is_in_untrusted_mode(void) { msr_t msr; msr = rdmsr(MSR_POWER_MISC); return !!(msr.lo & ENABLE_IA_UNTRUSTED); } void soc_core_init(struct device *cpu) { /* Configure Core PRMRR for SGX. */ if (CONFIG(SOC_INTEL_COMMON_BLOCK_SGX_ENABLE)) prmrr_core_configure(); /* Clear out pending MCEs */ /* TODO(adurbin): Some of these banks are core vs package scope. For now every CPU clears every bank. */ if (CONFIG(SOC_INTEL_COMMON_BLOCK_SGX_ENABLE) || acpi_get_sleep_type() == ACPI_S5) mca_configure(); /* Set core MSRs */ reg_script_run(core_msr_script); set_aesni_lock(); /* * Enable ACPI PM timer emulation, which also lets microcode know * location of ACPI_BASE_ADDRESS. This also enables other features * implemented in microcode. */ enable_pm_timer_emulation(); /* Set Max Non-Turbo ratio if RAPL is disabled. */ if (CONFIG(APL_SKIP_SET_POWER_LIMITS)) { cpu_set_p_state_to_max_non_turbo_ratio(); /* Disable speed step */ cpu_set_eist(false); } else if (CONFIG(APL_SET_MIN_CLOCK_RATIO)) { cpu_set_p_state_to_min_clock_ratio(); /* Disable speed step */ cpu_set_eist(false); } } #if !CONFIG(SOC_INTEL_COMMON_BLOCK_CPU_MPINIT) static void soc_init_core(struct device *cpu) { soc_core_init(cpu); } static struct device_operations cpu_dev_ops = { .init = soc_init_core, }; static const struct cpu_device_id cpu_table[] = { { X86_VENDOR_INTEL, CPUID_APOLLOLAKE_A0 }, { X86_VENDOR_INTEL, CPUID_APOLLOLAKE_B0 }, { X86_VENDOR_INTEL, CPUID_APOLLOLAKE_E0 }, { X86_VENDOR_INTEL, CPUID_GLK_A0 }, { X86_VENDOR_INTEL, CPUID_GLK_B0 }, { X86_VENDOR_INTEL, CPUID_GLK_R0 }, { 0, 0 }, }; static const struct cpu_driver driver __cpu_driver = { .ops = &cpu_dev_ops, .id_table = cpu_table, }; #endif /* * MP and SMM loading initialization. */ struct smm_relocation_attrs { uint32_t smbase; uint32_t smrr_base; uint32_t smrr_mask; }; static struct smm_relocation_attrs relo_attrs; /* * Do essential initialization tasks before APs can be fired up. * * IF (CONFIG(SOC_INTEL_COMMON_BLOCK_CPU_MPINIT)) - * Skip Pre MP init MTRR programming, as MTRRs are mirrored from BSP, * that are set prior to ramstage. * Real MTRRs are programmed after resource allocation. * * Do FSP loading before MP Init to ensure that the FSP component stored in * external stage cache in TSEG does not flush off due to SMM relocation * during MP Init stage. * * ELSE - * Enable MTRRs on the BSP. This creates the MTRR solution that the * APs will use. Otherwise APs will try to apply the incomplete solution * as the BSP is calculating it. */ static void pre_mp_init(void) { if (CONFIG(SOC_INTEL_COMMON_BLOCK_CPU_MPINIT)) { fsps_load(); return; } x86_setup_mtrrs_with_detect(); x86_mtrr_check(); } #if !CONFIG(SOC_INTEL_COMMON_BLOCK_CPU_MPINIT) static void read_cpu_topology(unsigned int *num_phys, unsigned int *num_virt) { msr_t msr; msr = rdmsr(MSR_CORE_THREAD_COUNT); *num_virt = (msr.lo >> 0) & 0xffff; *num_phys = (msr.lo >> 16) & 0xffff; } /* Find CPU topology */ int get_cpu_count(void) { unsigned int num_virt_cores, num_phys_cores; read_cpu_topology(&num_phys_cores, &num_virt_cores); printk(BIOS_DEBUG, "Detected %u core, %u thread CPU.\n", num_phys_cores, num_virt_cores); return num_virt_cores; } void get_microcode_info(const void **microcode, int *parallel) { *microcode = intel_microcode_find(); *parallel = 1; /* Make sure BSP is using the microcode from cbfs */ intel_microcode_load_unlocked(*microcode); } #endif static void get_smm_info(uintptr_t *perm_smbase, size_t *perm_smsize, size_t *smm_save_state_size) { uintptr_t smm_base; size_t smm_size; uintptr_t handler_base; size_t handler_size; /* All range registers are aligned to 4KiB */ const uint32_t rmask = ~((1 << 12) - 1); /* Initialize global tracking state. */ smm_region(&smm_base, &smm_size); smm_subregion(SMM_SUBREGION_HANDLER, &handler_base, &handler_size); relo_attrs.smbase = smm_base; relo_attrs.smrr_base = relo_attrs.smbase | MTRR_TYPE_WRBACK; relo_attrs.smrr_mask = ~(smm_size - 1) & rmask; relo_attrs.smrr_mask |= MTRR_PHYS_MASK_VALID; *perm_smbase = handler_base; *perm_smsize = handler_size; *smm_save_state_size = sizeof(em64t100_smm_state_save_area_t); } static void relocation_handler(int cpu, uintptr_t curr_smbase, uintptr_t staggered_smbase) { msr_t smrr; em64t100_smm_state_save_area_t *smm_state; /* Set up SMRR. */ smrr.lo = relo_attrs.smrr_base; smrr.hi = 0; wrmsr(IA32_SMRR_PHYS_BASE, smrr); smrr.lo = relo_attrs.smrr_mask; smrr.hi = 0; wrmsr(IA32_SMRR_PHYS_MASK, smrr); smm_state = (void *)(SMM_EM64T100_SAVE_STATE_OFFSET + curr_smbase); smm_state->smbase = staggered_smbase; } /* * CPU initialization recipe * * Note that no microcode update is passed to the init function. CSE updates * the microcode on all cores before releasing them from reset. That means that * the BSP and all APs will come up with the same microcode revision. */ static void post_mp_init(void) { global_smi_enable(); if (CONFIG(SOC_INTEL_COMMON_BLOCK_SGX_ENABLE)) mp_run_on_all_cpus(sgx_configure, NULL); } static const struct mp_ops mp_ops = { .pre_mp_init = pre_mp_init, .get_cpu_count = get_cpu_count, .get_smm_info = get_smm_info, .get_microcode_info = get_microcode_info, .pre_mp_smm_init = smm_southbridge_clear_state, .relocation_handler = relocation_handler, .post_mp_init = post_mp_init, }; void soc_init_cpus(struct bus *cpu_bus) { /* Clear for take-off */ /* TODO: Handle mp_init_with_smm failure? */ mp_init_with_smm(cpu_bus, &mp_ops); } void apollolake_init_cpus(struct device *dev) { if (CONFIG(SOC_INTEL_COMMON_BLOCK_CPU_MPINIT)) return; soc_init_cpus(dev->link_list); /* Temporarily cache the memory-mapped boot media. */ if (CONFIG(BOOT_DEVICE_MEMORY_MAPPED) && CONFIG(BOOT_DEVICE_SPI_FLASH)) fast_spi_cache_bios_region(); }