/* SPDX-License-Identifier: GPL-2.0-or-later */ #include <console/console.h> #include <fsp/util.h> #include <soc/meminit.h> #include <string.h> #define LPX_PHYSICAL_CH_WIDTH 16 #define LPX_CHANNELS CHANNEL_COUNT(LPX_PHYSICAL_CH_WIDTH) #define DDR4_PHYSICAL_CH_WIDTH 64 #define DDR4_CHANNELS CHANNEL_COUNT(DDR4_PHYSICAL_CH_WIDTH) #define DDR5_PHYSICAL_CH_WIDTH 32 #define DDR5_CHANNELS CHANNEL_COUNT(DDR5_PHYSICAL_CH_WIDTH) static void set_rcomp_config(FSP_M_CONFIG *mem_cfg, const struct mb_cfg *mb_cfg) { if (mb_cfg->rcomp.resistor != 0) mem_cfg->RcompResistor = mb_cfg->rcomp.resistor; for (size_t i = 0; i < ARRAY_SIZE(mem_cfg->RcompTarget); i++) { if (mb_cfg->rcomp.targets[i] != 0) mem_cfg->RcompTarget[i] = mb_cfg->rcomp.targets[i]; } } static void meminit_lp4x(FSP_M_CONFIG *mem_cfg) { mem_cfg->DqPinsInterleaved = 0; } static void meminit_lp5x(FSP_M_CONFIG *mem_cfg, const struct mem_lp5x_config *lp5x_config) { mem_cfg->DqPinsInterleaved = 0; mem_cfg->Lp5CccConfig = lp5x_config->ccc_config; } static void meminit_ddr(FSP_M_CONFIG *mem_cfg, const struct mem_ddr_config *ddr_config) { mem_cfg->DqPinsInterleaved = ddr_config->dq_pins_interleaved; } static const struct soc_mem_cfg soc_mem_cfg[] = { [MEM_TYPE_DDR4] = { .num_phys_channels = DDR4_CHANNELS, .phys_to_mrc_map = { [0] = 0, [1] = 4, }, .md_phy_masks = { /* * Only physical channel 0 is populated in case of half-populated * configuration. */ .half_channel = BIT(0), /* In mixed topologies, channel 1 is always memory-down. */ .mixed_topo = BIT(1), }, }, [MEM_TYPE_DDR5] = { .num_phys_channels = DDR5_CHANNELS, .phys_to_mrc_map = { [0] = 0, [1] = 1, [2] = 4, [3] = 5, }, .md_phy_masks = { /* * Physical channels 0 and 1 are populated in case of * half-populated configurations. */ .half_channel = BIT(0) | BIT(1), /* In mixed topologies, channels 2 and 3 are always memory-down. */ .mixed_topo = BIT(2) | BIT(3), }, }, [MEM_TYPE_LP4X] = { .num_phys_channels = LPX_CHANNELS, .phys_to_mrc_map = { [0] = 0, [1] = 1, [2] = 2, [3] = 3, [4] = 4, [5] = 5, [6] = 6, [7] = 7, }, .md_phy_masks = { /* * Physical channels 0, 1, 2 and 3 are populated in case of * half-populated configurations. */ .half_channel = BIT(0) | BIT(1) | BIT(2) | BIT(3), /* LP4x does not support mixed topologies. */ }, }, [MEM_TYPE_LP5X] = { .num_phys_channels = LPX_CHANNELS, .phys_to_mrc_map = { [0] = 0, [1] = 1, [2] = 2, [3] = 3, [4] = 4, [5] = 5, [6] = 6, [7] = 7, }, .md_phy_masks = { /* * Physical channels 0, 1, 2 and 3 are populated in case of * half-populated configurations. */ .half_channel = BIT(0) | BIT(1) | BIT(2) | BIT(3), /* LP5x does not support mixed topologies. */ }, }, }; static void mem_init_spd_upds(FSP_M_CONFIG *mem_cfg, const struct mem_channel_data *data) { uint32_t *spd_upds[MRC_CHANNELS][CONFIG_DIMMS_PER_CHANNEL] = { [0] = { &mem_cfg->MemorySpdPtr000, &mem_cfg->MemorySpdPtr001, }, [1] = { &mem_cfg->MemorySpdPtr010, &mem_cfg->MemorySpdPtr011, }, [2] = { &mem_cfg->MemorySpdPtr020, &mem_cfg->MemorySpdPtr021, }, [3] = { &mem_cfg->MemorySpdPtr030, &mem_cfg->MemorySpdPtr031, }, [4] = { &mem_cfg->MemorySpdPtr100, &mem_cfg->MemorySpdPtr101, }, [5] = { &mem_cfg->MemorySpdPtr110, &mem_cfg->MemorySpdPtr111, }, [6] = { &mem_cfg->MemorySpdPtr120, &mem_cfg->MemorySpdPtr121, }, [7] = { &mem_cfg->MemorySpdPtr130, &mem_cfg->MemorySpdPtr131, }, }; uint8_t *disable_channel_upds[MRC_CHANNELS] = { &mem_cfg->DisableMc0Ch0, &mem_cfg->DisableMc0Ch1, &mem_cfg->DisableMc0Ch2, &mem_cfg->DisableMc0Ch3, &mem_cfg->DisableMc1Ch0, &mem_cfg->DisableMc1Ch1, &mem_cfg->DisableMc1Ch2, &mem_cfg->DisableMc1Ch3, }; size_t ch, dimm; mem_cfg->MemorySpdDataLen = data->spd_len; for (ch = 0; ch < MRC_CHANNELS; ch++) { uint8_t *disable_channel_ptr = disable_channel_upds[ch]; bool enable_channel = 0; for (dimm = 0; dimm < CONFIG_DIMMS_PER_CHANNEL; dimm++) { uint32_t *spd_ptr = spd_upds[ch][dimm]; *spd_ptr = data->spd[ch][dimm]; if (*spd_ptr) enable_channel = 1; } *disable_channel_ptr = !enable_channel; } } static void mem_init_dq_dqs_upds(void *upds[MRC_CHANNELS], const void *map, size_t upd_size, const struct mem_channel_data *data, bool auto_detect) { size_t i; for (i = 0; i < MRC_CHANNELS; i++, map += upd_size) { if (auto_detect || !channel_is_populated(i, MRC_CHANNELS, data->ch_population_flags)) memset(upds[i], 0, upd_size); else memcpy(upds[i], map, upd_size); } } static void mem_init_dq_upds(FSP_M_CONFIG *mem_cfg, const struct mem_channel_data *data, const struct mb_cfg *mb_cfg, bool auto_detect) { void *dq_upds[MRC_CHANNELS] = { &mem_cfg->DqMapCpu2DramMc0Ch0, &mem_cfg->DqMapCpu2DramMc0Ch1, &mem_cfg->DqMapCpu2DramMc0Ch2, &mem_cfg->DqMapCpu2DramMc0Ch3, &mem_cfg->DqMapCpu2DramMc1Ch0, &mem_cfg->DqMapCpu2DramMc1Ch1, &mem_cfg->DqMapCpu2DramMc1Ch2, &mem_cfg->DqMapCpu2DramMc1Ch3, }; const size_t upd_size = sizeof(mem_cfg->DqMapCpu2DramMc0Ch0); _Static_assert(sizeof(mem_cfg->DqMapCpu2DramMc0Ch0) == CONFIG_MRC_CHANNEL_WIDTH, "Incorrect DQ UPD size!"); mem_init_dq_dqs_upds(dq_upds, mb_cfg->dq_map, upd_size, data, auto_detect); } static void mem_init_dqs_upds(FSP_M_CONFIG *mem_cfg, const struct mem_channel_data *data, const struct mb_cfg *mb_cfg, bool auto_detect) { void *dqs_upds[MRC_CHANNELS] = { &mem_cfg->DqsMapCpu2DramMc0Ch0, &mem_cfg->DqsMapCpu2DramMc0Ch1, &mem_cfg->DqsMapCpu2DramMc0Ch2, &mem_cfg->DqsMapCpu2DramMc0Ch3, &mem_cfg->DqsMapCpu2DramMc1Ch0, &mem_cfg->DqsMapCpu2DramMc1Ch1, &mem_cfg->DqsMapCpu2DramMc1Ch2, &mem_cfg->DqsMapCpu2DramMc1Ch3, }; const size_t upd_size = sizeof(mem_cfg->DqsMapCpu2DramMc0Ch0); _Static_assert(sizeof(mem_cfg->DqsMapCpu2DramMc0Ch0) == CONFIG_MRC_CHANNEL_WIDTH / 8, "Incorrect DQS UPD size!"); mem_init_dq_dqs_upds(dqs_upds, mb_cfg->dqs_map, upd_size, data, auto_detect); } #define DDR5_CH_DIMM_OFFSET(ch, dimm) ((ch) * CONFIG_DIMMS_PER_CHANNEL + (dimm)) static void ddr5_fill_dimm_module_info(FSP_M_CONFIG *mem_cfg, const struct mb_cfg *mb_cfg, const struct mem_spd *spd_info) { for (size_t ch = 0; ch < soc_mem_cfg[MEM_TYPE_DDR5].num_phys_channels; ch++) { for (size_t dimm = 0; dimm < CONFIG_DIMMS_PER_CHANNEL; dimm++) { size_t mrc_ch = soc_mem_cfg[MEM_TYPE_DDR5].phys_to_mrc_map[ch]; mem_cfg->SpdAddressTable[DDR5_CH_DIMM_OFFSET(mrc_ch, dimm)] = spd_info->smbus[ch].addr_dimm[dimm] << 1; } } mem_init_dq_upds(mem_cfg, NULL, mb_cfg, true); mem_init_dqs_upds(mem_cfg, NULL, mb_cfg, true); } void memcfg_init(FSPM_UPD *memupd, const struct mb_cfg *mb_cfg, const struct mem_spd *spd_info, bool half_populated) { struct mem_channel_data data; bool dq_dqs_auto_detect = false; FSP_M_CONFIG *mem_cfg = &memupd->FspmConfig; mem_cfg->ECT = mb_cfg->ect; mem_cfg->UserBd = mb_cfg->UserBd; set_rcomp_config(mem_cfg, mb_cfg); /* Fill command mirror for memory */ mem_cfg->CmdMirror = mb_cfg->CmdMirror; /* Fill LpDdrrDqDqs Retraining for memory */ mem_cfg->LpDdrDqDqsReTraining = mb_cfg->LpDdrDqDqsReTraining; switch (mb_cfg->type) { case MEM_TYPE_DDR4: meminit_ddr(mem_cfg, &mb_cfg->ddr_config); dq_dqs_auto_detect = true; break; case MEM_TYPE_DDR5: meminit_ddr(mem_cfg, &mb_cfg->ddr_config); dq_dqs_auto_detect = true; /* * TODO: Drop this workaround once SMBus driver in coreboot is updated to * support DDR5 EEPROM reading. */ if (spd_info->topo == MEM_TOPO_DIMM_MODULE) { ddr5_fill_dimm_module_info(mem_cfg, mb_cfg, spd_info); return; } break; case MEM_TYPE_LP4X: meminit_lp4x(mem_cfg); break; case MEM_TYPE_LP5X: meminit_lp5x(mem_cfg, &mb_cfg->lp5x_config); break; default: die("Unsupported memory type(%d)\n", mb_cfg->type); } mem_populate_channel_data(memupd, &soc_mem_cfg[mb_cfg->type], spd_info, half_populated, &data); mem_init_spd_upds(mem_cfg, &data); mem_init_dq_upds(mem_cfg, &data, mb_cfg, dq_dqs_auto_detect); mem_init_dqs_upds(mem_cfg, &data, mb_cfg, dq_dqs_auto_detect); }