/* SPDX-License-Identifier: GPL-2.0-only */ #define __SIMPLE_DEVICE__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define HASHALG_SHA1 0x00000001 #define HASHALG_SHA256 0x00000002 #define HASHALG_SHA384 0x00000003 #define HASHALG_SHA512 0x00000004 #define MAX_HASH_SIZE VB2_SHA512_DIGEST_SIZE #define GET_IP_FIRMWARE_CMD 0x21 #define HSPHY_PAYLOAD_SIZE (32*KiB) #define CPU_PID_PCIE_PHYX16_BROADCAST 0x55 struct ip_push_model { uint16_t count; uint16_t address; uint32_t data[0]; } __packed; static int heci_get_hsphy_payload(void *buf, uint32_t *buf_size, uint8_t *hash_buf, uint8_t *hash_alg, uint32_t *status) { size_t reply_size; struct heci_ip_load_request { struct mkhi_hdr hdr; uint32_t version; uint32_t operation; uint32_t dram_base_low; uint32_t dram_base_high; uint32_t memory_size; uint32_t reserved; } __packed msg = { .hdr = { .group_id = MKHI_GROUP_ID_BUP_COMMON, .command = GET_IP_FIRMWARE_CMD, }, .version = 1, .operation = 1, .dram_base_low = (uintptr_t)buf, .dram_base_high = 0, .memory_size = *buf_size, .reserved = 0, }; struct heci_ip_load_response { struct mkhi_hdr hdr; uint32_t payload_size; uint32_t reserved[2]; uint32_t status; uint8_t hash_type; uint8_t hash[MAX_HASH_SIZE]; } __packed reply; if (!buf || !buf_size || !hash_buf || !hash_alg) { printk(BIOS_ERR, "%s: Invalid parameters\n", __func__); return -1; } reply_size = sizeof(reply); memset(&reply, 0, reply_size); printk(BIOS_DEBUG, "HECI: Sending Get IP firmware command\n"); if (heci_send_receive(&msg, sizeof(msg), &reply, &reply_size, HECI_MKHI_ADDR)) { printk(BIOS_ERR, "HECI: Get IP firmware failed\n"); return -1; } if (reply.hdr.result) { printk(BIOS_ERR, "HECI: Get IP firmware response invalid\n"); *status = reply.status; printk(BIOS_DEBUG, "HECI response:\n"); hexdump(&reply, sizeof(reply)); return -1; } *buf_size = reply.payload_size; *hash_alg = reply.hash_type; *status = reply.status; memcpy(hash_buf, reply.hash, MAX_HASH_SIZE); printk(BIOS_DEBUG, "HECI: Get IP firmware success. Response:\n"); printk(BIOS_DEBUG, " Payload size = 0x%x\n", *buf_size); printk(BIOS_DEBUG, " Hash type used for signing payload = 0x%x\n", *hash_alg); return 0; } static int verify_hsphy_hash(void *buf, uint32_t buf_size, uint8_t *hash_buf, uint8_t hash_alg) { struct vb2_hash hash; switch (hash_alg) { case HASHALG_SHA256: hash.algo = VB2_HASH_SHA256; break; case HASHALG_SHA384: hash.algo = VB2_HASH_SHA384; break; case HASHALG_SHA512: hash.algo = VB2_HASH_SHA512; break; case HASHALG_SHA1: default: printk(BIOS_ERR, "Hash alg %d not supported, trying SHA384\n", hash_alg); hash.algo = VB2_HASH_SHA384; break; } memcpy(hash.raw, hash_buf, vb2_digest_size(hash.algo)); if (vb2_hash_verify(vboot_hwcrypto_allowed(), buf, buf_size, &hash) != VB2_SUCCESS) { printk(BIOS_ERR, "HSPHY SHA hashes do not match\n"); return -1; } return 0; } static void upload_hsphy_to_cpu_pcie(void *buf, uint32_t buf_size) { uint16_t i = 0, j; struct ip_push_model *push_model = (struct ip_push_model *)buf; while (i < buf_size) { i += sizeof(*push_model); if ((push_model->address == 0) && (push_model->count == 0)) break; // End of file for (j = 0; j < push_model->count; j++) { REGBAR32(CPU_PID_PCIE_PHYX16_BROADCAST, push_model->address) = push_model->data[j]; i += sizeof(uint32_t); } push_model = (struct ip_push_model *)(buf + i); } } void load_and_init_hsphy(void) { void *hsphy_buf; uint8_t hsphy_hash[MAX_HASH_SIZE] = { 0 }; uint8_t hash_type; uint32_t buf_size = HSPHY_PAYLOAD_SIZE; pci_devfn_t dev = PCH_DEV_CSE; const uint16_t pci_cmd_bme_mem = PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY; uint32_t status; if (!is_devfn_enabled(SA_DEVFN_CPU_PCIE1_0) && !is_devfn_enabled(SA_DEVFN_CPU_PCIE1_1)) { printk(BIOS_DEBUG, "All HSPHY ports disabled, skipping HSPHY loading\n"); return; } /* Align the buffer to page size, otherwise the HECI command will fail */ hsphy_buf = memalign(4 * KiB, HSPHY_PAYLOAD_SIZE); if (!hsphy_buf) { printk(BIOS_ERR, "Could not allocate memory for HSPHY blob\n"); printk(BIOS_ERR, "Aborting HSPHY firmware loading, PCIe Gen5 won't work.\n"); return; } memset(hsphy_buf, 0, HSPHY_PAYLOAD_SIZE); if (!is_cse_enabled()) { printk(BIOS_ERR, "%s: CSME not enabled or not visible, but required\n", __func__); printk(BIOS_ERR, "Aborting HSPHY firmware loading, PCIe Gen5 won't work.\n"); free(hsphy_buf); return; } /* Ensure BAR, BME and memory space are enabled */ if ((pci_read_config16(dev, PCI_COMMAND) & pci_cmd_bme_mem) != pci_cmd_bme_mem) pci_or_config16(dev, PCI_COMMAND, pci_cmd_bme_mem); if (pci_read_config32(dev, PCI_BASE_ADDRESS_0) == 0) { pci_and_config16(dev, PCI_COMMAND, ~pci_cmd_bme_mem); pci_write_config32(dev, PCI_BASE_ADDRESS_0, HECI1_BASE_ADDRESS); pci_or_config16(dev, PCI_COMMAND, pci_cmd_bme_mem); } if (heci_get_hsphy_payload(hsphy_buf, &buf_size, hsphy_hash, &hash_type, &status)) { printk(BIOS_ERR, "Aborting HSPHY firmware loading, PCIe Gen5 won't work.\n"); free(hsphy_buf); return; } if (verify_hsphy_hash(hsphy_buf, buf_size, hsphy_hash, hash_type)) { printk(BIOS_ERR, "Aborting HSPHY firmware loading, PCIe Gen5 won't work.\n"); free(hsphy_buf); return; } upload_hsphy_to_cpu_pcie(hsphy_buf, buf_size); free(hsphy_buf); }