/* * This file is part of the coreboot project. * * Copyright (C) 2010-2017 Advanced Micro Devices, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Table of devices that need their AOAC registers enabled and waited * upon (usually about .55 milliseconds). Instead of individual delays * waiting for each device to become available, a single delay will be * executed. */ const static struct stoneyridge_aoac aoac_devs[] = { { (FCH_AOAC_D3_CONTROL_UART0 + CONFIG_UART_FOR_CONSOLE * 2), (FCH_AOAC_D3_STATE_UART0 + CONFIG_UART_FOR_CONSOLE * 2) }, { FCH_AOAC_D3_CONTROL_AMBA, FCH_AOAC_D3_STATE_AMBA }, { FCH_AOAC_D3_CONTROL_I2C0, FCH_AOAC_D3_STATE_I2C0 }, { FCH_AOAC_D3_CONTROL_I2C1, FCH_AOAC_D3_STATE_I2C1 }, { FCH_AOAC_D3_CONTROL_I2C2, FCH_AOAC_D3_STATE_I2C2 }, { FCH_AOAC_D3_CONTROL_I2C3, FCH_AOAC_D3_STATE_I2C3 } }; static int is_sata_config(void) { return !((SataNativeIde == CONFIG_STONEYRIDGE_SATA_MODE) || (SataLegacyIde == CONFIG_STONEYRIDGE_SATA_MODE)); } static inline int sb_sata_enable(void) { /* True if IDE or AHCI. */ return (SataNativeIde == CONFIG_STONEYRIDGE_SATA_MODE) || (SataAhci == CONFIG_STONEYRIDGE_SATA_MODE); } static inline int sb_ide_enable(void) { /* True if IDE or LEGACY IDE. */ return (SataNativeIde == CONFIG_STONEYRIDGE_SATA_MODE) || (SataLegacyIde == CONFIG_STONEYRIDGE_SATA_MODE); } void SetFchResetParams(FCH_RESET_INTERFACE *params) { const struct device *dev = pcidev_path_on_root(SATA_DEVFN); params->Xhci0Enable = CONFIG(STONEYRIDGE_XHCI_ENABLE); if (dev && dev->enabled) { params->SataEnable = sb_sata_enable(); params->IdeEnable = sb_ide_enable(); } else { params->SataEnable = FALSE; params->IdeEnable = FALSE; } } void SetFchEnvParams(FCH_INTERFACE *params) { const struct device *dev = pcidev_path_on_root(SATA_DEVFN); params->AzaliaController = AzEnable; params->SataClass = CONFIG_STONEYRIDGE_SATA_MODE; if (dev && dev->enabled) { params->SataEnable = is_sata_config(); params->IdeEnable = !params->SataEnable; params->SataIdeMode = (CONFIG_STONEYRIDGE_SATA_MODE == SataLegacyIde); } else { params->SataEnable = FALSE; params->IdeEnable = FALSE; params->SataIdeMode = FALSE; } } void SetFchMidParams(FCH_INTERFACE *params) { SetFchEnvParams(params); } /* * Table of APIC register index and associated IRQ name. Using IDX_XXX_NAME * provides a visible association with the index, therefore helping * maintainability of table. If a new index/name is defined in * amd_pci_int_defs.h, just add the pair at the end of this table. * Order is not important. */ const static struct irq_idx_name irq_association[] = { { PIRQ_A, "INTA#" }, { PIRQ_B, "INTB#" }, { PIRQ_C, "INTC#" }, { PIRQ_D, "INTD#" }, { PIRQ_E, "INTE#" }, { PIRQ_F, "INTF#" }, { PIRQ_G, "INTG#" }, { PIRQ_H, "INTH#" }, { PIRQ_MISC, "Misc" }, { PIRQ_MISC0, "Misc0" }, { PIRQ_MISC1, "Misc1" }, { PIRQ_MISC2, "Misc2" }, { PIRQ_SIRQA, "Ser IRQ INTA" }, { PIRQ_SIRQB, "Ser IRQ INTB" }, { PIRQ_SIRQC, "Ser IRQ INTC" }, { PIRQ_SIRQD, "Ser IRQ INTD" }, { PIRQ_SCI, "SCI" }, { PIRQ_SMBUS, "SMBUS" }, { PIRQ_ASF, "ASF" }, { PIRQ_HDA, "HDA" }, { PIRQ_FC, "FC" }, { PIRQ_PMON, "PerMon" }, { PIRQ_SD, "SD" }, { PIRQ_SDIO, "SDIOt" }, { PIRQ_EHCI, "EHCI" }, { PIRQ_XHCI, "XHCI" }, { PIRQ_SATA, "SATA" }, { PIRQ_GPIO, "GPIO" }, { PIRQ_I2C0, "I2C0" }, { PIRQ_I2C1, "I2C1" }, { PIRQ_I2C2, "I2C2" }, { PIRQ_I2C3, "I2C3" }, { PIRQ_UART0, "UART0" }, { PIRQ_UART1, "UART1" }, }; /* * Structure to simplify code obtaining the total of used wide IO * registers and the size assigned to each. */ static struct wide_io_ioport_and_bits { uint32_t enable; uint16_t port; uint8_t alt; } wio_io_en[TOTAL_WIDEIO_PORTS] = { { LPC_WIDEIO0_ENABLE, LPC_WIDEIO_GENERIC_PORT, LPC_ALT_WIDEIO0_ENABLE }, { LPC_WIDEIO1_ENABLE, LPC_WIDEIO1_GENERIC_PORT, LPC_ALT_WIDEIO1_ENABLE }, { LPC_WIDEIO2_ENABLE, LPC_WIDEIO2_GENERIC_PORT, LPC_ALT_WIDEIO2_ENABLE } }; const struct irq_idx_name *sb_get_apic_reg_association(size_t *size) { *size = ARRAY_SIZE(irq_association); return irq_association; } /** * @brief Find the size of a particular wide IO * * @param index = index of desired wide IO * * @return size of desired wide IO */ uint16_t sb_wideio_size(int index) { uint32_t enable_register; uint16_t size = 0; uint8_t alternate_register; if (index >= TOTAL_WIDEIO_PORTS) return size; enable_register = pci_read_config32(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE); alternate_register = pci_read_config8(SOC_LPC_DEV, LPC_ALT_WIDEIO_RANGE_ENABLE); if (enable_register & wio_io_en[index].enable) size = (alternate_register & wio_io_en[index].alt) ? 16 : 512; return size; } /** * @brief Identify if any LPC wide IO is covering the IO range * * @param start = start of IO range * @param size = size of IO range * * @return Index of wide IO covering the range or error */ int sb_find_wideio_range(uint16_t start, uint16_t size) { int i, index = WIDEIO_RANGE_ERROR; uint16_t end, current_size, start_wideio, end_wideio; end = start + size; for (i = 0; i < TOTAL_WIDEIO_PORTS; i++) { current_size = sb_wideio_size(i); if (current_size == 0) continue; start_wideio = pci_read_config16(SOC_LPC_DEV, wio_io_en[i].port); end_wideio = start_wideio + current_size; if ((start >= start_wideio) && (end <= end_wideio)) { index = i; break; } } return index; } /** * @brief Program a LPC wide IO to support an IO range * * @param start = start of range to be routed through wide IO * @param size = size of range to be routed through wide IO * * @return Index of wide IO register used or error */ int sb_set_wideio_range(uint16_t start, uint16_t size) { int i, index = WIDEIO_RANGE_ERROR; uint32_t enable_register; uint8_t alternate_register; enable_register = pci_read_config32(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE); alternate_register = pci_read_config8(SOC_LPC_DEV, LPC_ALT_WIDEIO_RANGE_ENABLE); for (i = 0; i < TOTAL_WIDEIO_PORTS; i++) { if (enable_register & wio_io_en[i].enable) continue; index = i; pci_write_config16(SOC_LPC_DEV, wio_io_en[i].port, start); enable_register |= wio_io_en[i].enable; pci_write_config32(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE, enable_register); if (size <= 16) alternate_register |= wio_io_en[i].alt; else alternate_register &= ~wio_io_en[i].alt; pci_write_config8(SOC_LPC_DEV, LPC_ALT_WIDEIO_RANGE_ENABLE, alternate_register); break; } return index; } static void power_on_aoac_device(int aoac_device_control_register) { uint8_t byte; /* Power on the UART and AMBA devices */ byte = aoac_read8(aoac_device_control_register); byte |= FCH_AOAC_PWR_ON_DEV; aoac_write8(aoac_device_control_register, byte); } static bool is_aoac_device_enabled(int aoac_device_status_register) { uint8_t byte; byte = aoac_read8(aoac_device_status_register); byte &= (FCH_AOAC_PWR_RST_STATE | FCH_AOAC_RST_CLK_OK_STATE); if (byte == (FCH_AOAC_PWR_RST_STATE | FCH_AOAC_RST_CLK_OK_STATE)) return true; else return false; } void enable_aoac_devices(void) { bool status; int i; for (i = 0; i < ARRAY_SIZE(aoac_devs); i++) power_on_aoac_device(aoac_devs[i].enable); /* Wait for AOAC devices to indicate power and clock OK */ do { udelay(100); status = true; for (i = 0; i < ARRAY_SIZE(aoac_devs); i++) status &= is_aoac_device_enabled(aoac_devs[i].status); } while (!status); } void sb_pci_port80(void) { u8 byte; byte = pci_read_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DEC_EN_HIGH); byte &= ~DECODE_IO_PORT_ENABLE4_H; /* disable lpc port 80 */ pci_write_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DEC_EN_HIGH, byte); } void sb_lpc_port80(void) { u8 byte; /* Enable LPC controller */ outb(PM_LPC_GATING, PM_INDEX); byte = inb(PM_DATA); byte |= PM_LPC_ENABLE; outb(PM_LPC_GATING, PM_INDEX); outb(byte, PM_DATA); /* Enable port 80 LPC decode in pci function 3 configuration space. */ byte = pci_read_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DEC_EN_HIGH); byte |= DECODE_IO_PORT_ENABLE4_H; /* enable port 80 */ pci_write_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DEC_EN_HIGH, byte); } void sb_lpc_decode(void) { u32 tmp = 0; /* Enable I/O decode to LPC bus */ tmp = DECODE_ENABLE_PARALLEL_PORT0 | DECODE_ENABLE_PARALLEL_PORT2 | DECODE_ENABLE_PARALLEL_PORT4 | DECODE_ENABLE_SERIAL_PORT0 | DECODE_ENABLE_SERIAL_PORT1 | DECODE_ENABLE_SERIAL_PORT2 | DECODE_ENABLE_SERIAL_PORT3 | DECODE_ENABLE_SERIAL_PORT4 | DECODE_ENABLE_SERIAL_PORT5 | DECODE_ENABLE_SERIAL_PORT6 | DECODE_ENABLE_SERIAL_PORT7 | DECODE_ENABLE_AUDIO_PORT0 | DECODE_ENABLE_AUDIO_PORT1 | DECODE_ENABLE_AUDIO_PORT2 | DECODE_ENABLE_AUDIO_PORT3 | DECODE_ENABLE_MSS_PORT2 | DECODE_ENABLE_MSS_PORT3 | DECODE_ENABLE_FDC_PORT0 | DECODE_ENABLE_FDC_PORT1 | DECODE_ENABLE_GAME_PORT | DECODE_ENABLE_KBC_PORT | DECODE_ENABLE_ACPIUC_PORT | DECODE_ENABLE_ADLIB_PORT; pci_write_config32(SOC_LPC_DEV, LPC_IO_PORT_DECODE_ENABLE, tmp); } void sb_acpi_mmio_decode(void) { uint8_t byte; /* Enable ACPI MMIO range 0xfed80000 - 0xfed81fff */ outb(PM_ISA_CONTROL, PM_INDEX); byte = inb(PM_DATA); byte |= MMIO_EN; outb(PM_ISA_CONTROL, PM_INDEX); outb(byte, PM_DATA); } static void sb_enable_cf9_io(void) { uint32_t reg = pm_read32(PM_DECODE_EN); pm_write32(PM_DECODE_EN, reg | CF9_IO_EN); } static void sb_enable_legacy_io(void) { uint32_t reg = pm_read32(PM_DECODE_EN); pm_write32(PM_DECODE_EN, reg | LEGACY_IO_EN); } void sb_clk_output_48Mhz(u32 osc) { u32 ctrl; /* * Clear the disable for OSCOUT1 (signal typically named XnnM_25M_48M) * or OSCOUT2 (USBCLK/25M_48M_OSC). The frequency defaults to 48MHz. */ ctrl = misc_read32(MISC_CLK_CNTL1); switch (osc) { case 1: ctrl &= ~OSCOUT1_CLK_OUTPUT_ENB; break; case 2: ctrl &= ~OSCOUT2_CLK_OUTPUT_ENB; break; default: return; /* do nothing if invalid */ } misc_write32(MISC_CLK_CNTL1, ctrl); } static uintptr_t sb_spibase(void) { u32 base, enables; /* Make sure the base address is predictable */ base = pci_read_config32(SOC_LPC_DEV, SPIROM_BASE_ADDRESS_REGISTER); enables = base & SPI_PRESERVE_BITS; base &= ~(SPI_PRESERVE_BITS | SPI_BASE_RESERVED); if (!base) { base = SPI_BASE_ADDRESS; pci_write_config32(SOC_LPC_DEV, SPIROM_BASE_ADDRESS_REGISTER, base | enables | SPI_ROM_ENABLE); /* PCI_COMMAND_MEMORY is read-only and enabled. */ } return (uintptr_t)base; } void sb_set_spi100(u16 norm, u16 fast, u16 alt, u16 tpm) { uintptr_t base = sb_spibase(); write16((void *)(base + SPI100_SPEED_CONFIG), (norm << SPI_NORM_SPEED_NEW_SH) | (fast << SPI_FAST_SPEED_NEW_SH) | (alt << SPI_ALT_SPEED_NEW_SH) | (tpm << SPI_TPM_SPEED_NEW_SH)); write16((void *)(base + SPI100_ENABLE), SPI_USE_SPI100); } void sb_disable_4dw_burst(void) { uintptr_t base = sb_spibase(); write16((void *)(base + SPI100_HOST_PREF_CONFIG), read16((void *)(base + SPI100_HOST_PREF_CONFIG)) & ~SPI_RD4DW_EN_HOST); } void sb_read_mode(u32 mode) { uintptr_t base = sb_spibase(); write32((void *)(base + SPI_CNTRL0), (read32((void *)(base + SPI_CNTRL0)) & ~SPI_READ_MODE_MASK) | mode); } /* * Enable FCH to decode TPM associated Memory and IO regions * * Enable decoding of TPM cycles defined in TPM 1.2 spec * Enable decoding of legacy TPM addresses: IO addresses 0x7f- * 0x7e and 0xef-0xee. * This function should be called if TPM is connected in any way to the FCH and * conforms to the regions decoded. * Absent any other routing configuration the TPM cycles will be claimed by the * LPC bus */ void sb_tpm_decode(void) { u32 value; value = pci_read_config32(SOC_LPC_DEV, LPC_TRUSTED_PLATFORM_MODULE); value |= TPM_12_EN | TPM_LEGACY_EN; pci_write_config32(SOC_LPC_DEV, LPC_TRUSTED_PLATFORM_MODULE, value); } /* * Enable FCH to decode TPM associated Memory and IO regions to SPI * * This should be used if TPM is connected to SPI bus. * Assumes SPI address space is already configured via a call to sb_spibase(). */ void sb_tpm_decode_spi(void) { /* Enable TPM decoding to FCH */ sb_tpm_decode(); /* Route TPM accesses to SPI */ u32 spibase = pci_read_config32(SOC_LPC_DEV, SPIROM_BASE_ADDRESS_REGISTER); pci_write_config32(SOC_LPC_DEV, SPIROM_BASE_ADDRESS_REGISTER, spibase | ROUTE_TPM_2_SPI); } /* * Enable 4MB (LPC) ROM access at 0xFFC00000 - 0xFFFFFFFF. * * Hardware should enable LPC ROM by pin straps. This function does not * handle the theoretically possible PCI ROM, FWH, or SPI ROM configurations. * * The southbridge power-on default is to map 512K ROM space. * */ void sb_enable_rom(void) { u8 reg8; /* * Decode variable LPC ROM address ranges 1 and 2. * Bits 3-4 are not defined in any publicly available datasheet */ reg8 = pci_read_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE); reg8 |= (1 << 3) | (1 << 4); pci_write_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE, reg8); /* * LPC ROM address range 1: * Enable LPC ROM range mirroring start at 0x000e(0000). */ pci_write_config16(SOC_LPC_DEV, ROM_ADDRESS_RANGE1_START, 0x000e); /* Enable LPC ROM range mirroring end at 0x000f(ffff). */ pci_write_config16(SOC_LPC_DEV, ROM_ADDRESS_RANGE1_END, 0x000f); /* * LPC ROM address range 2: * * Enable LPC ROM range start at: * 0xfff8(0000): 512KB * 0xfff0(0000): 1MB * 0xffe0(0000): 2MB * 0xffc0(0000): 4MB */ pci_write_config16(SOC_LPC_DEV, ROM_ADDRESS_RANGE2_START, 0x10000 - (CONFIG_COREBOOT_ROMSIZE_KB >> 6)); /* Enable LPC ROM range end at 0xffff(ffff). */ pci_write_config16(SOC_LPC_DEV, ROM_ADDRESS_RANGE2_END, 0xffff); } static void sb_lpc_early_setup(void) { uint32_t dword; /* Enable SPI prefetch */ dword = pci_read_config32(SOC_LPC_DEV, LPC_ROM_DMA_EC_HOST_CONTROL); dword |= SPI_FROM_HOST_PREFETCH_EN | SPI_FROM_USB_PREFETCH_EN; pci_write_config32(SOC_LPC_DEV, LPC_ROM_DMA_EC_HOST_CONTROL, dword); if (CONFIG(STONEYRIDGE_LEGACY_FREE)) { /* Decode SIOs at 2E/2F and 4E/4F */ dword = pci_read_config32(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE); dword |= DECODE_ALTERNATE_SIO_ENABLE | DECODE_SIO_ENABLE; pci_write_config32(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE, dword); } } static void setup_spread_spectrum(int *reboot) { uint16_t rstcfg = pm_read16(PWR_RESET_CFG); rstcfg &= ~TOGGLE_ALL_PWR_GOOD; pm_write16(PWR_RESET_CFG, rstcfg); uint32_t cntl1 = misc_read32(MISC_CLK_CNTL1); if (cntl1 & CG1PLL_FBDIV_TEST) { printk(BIOS_DEBUG, "Spread spectrum is ready\n"); misc_write32(MISC_CGPLL_CONFIG1, misc_read32(MISC_CGPLL_CONFIG1) | CG1PLL_SPREAD_SPECTRUM_ENABLE); return; } printk(BIOS_DEBUG, "Setting up spread spectrum\n"); uint32_t cfg6 = misc_read32(MISC_CGPLL_CONFIG6); cfg6 &= ~CG1PLL_LF_MODE_MASK; cfg6 |= (0x0f8 << CG1PLL_LF_MODE_SHIFT) & CG1PLL_LF_MODE_MASK; misc_write32(MISC_CGPLL_CONFIG6, cfg6); uint32_t cfg3 = misc_read32(MISC_CGPLL_CONFIG3); cfg3 &= ~CG1PLL_REFDIV_MASK; cfg3 |= (0x003 << CG1PLL_REFDIV_SHIFT) & CG1PLL_REFDIV_MASK; cfg3 &= ~CG1PLL_FBDIV_MASK; cfg3 |= (0x04b << CG1PLL_FBDIV_SHIFT) & CG1PLL_FBDIV_MASK; misc_write32(MISC_CGPLL_CONFIG3, cfg3); uint32_t cfg5 = misc_read32(MISC_CGPLL_CONFIG5); cfg5 &= ~SS_AMOUNT_NFRAC_SLIP_MASK; cfg5 |= (0x2 << SS_AMOUNT_NFRAC_SLIP_SHIFT) & SS_AMOUNT_NFRAC_SLIP_MASK; misc_write32(MISC_CGPLL_CONFIG5, cfg5); uint32_t cfg4 = misc_read32(MISC_CGPLL_CONFIG4); cfg4 &= ~SS_AMOUNT_DSFRAC_MASK; cfg4 |= (0xd000 << SS_AMOUNT_DSFRAC_SHIFT) & SS_AMOUNT_DSFRAC_MASK; cfg4 &= ~SS_STEP_SIZE_DSFRAC_MASK; cfg4 |= (0x02d5 << SS_STEP_SIZE_DSFRAC_SHIFT) & SS_STEP_SIZE_DSFRAC_MASK; misc_write32(MISC_CGPLL_CONFIG4, cfg4); rstcfg |= TOGGLE_ALL_PWR_GOOD; pm_write16(PWR_RESET_CFG, rstcfg); cntl1 |= CG1PLL_FBDIV_TEST; misc_write32(MISC_CLK_CNTL1, cntl1); *reboot = 1; } static void setup_misc(int *reboot) { /* Undocumented register */ uint32_t reg = misc_read32(0x50); if (!(reg & BIT(16))) { reg |= BIT(16); misc_write32(0x50, reg); *reboot = 1; } } static void fch_smbus_init(void) { pm_write8(SMB_ASF_IO_BASE, SMB_BASE_ADDR >> 8); smbus_write8(SMBTIMING, SMB_SPEED_400KHZ); /* Clear all SMBUS status bits */ smbus_write8(SMBHSTSTAT, SMBHST_STAT_CLEAR); smbus_write8(SMBSLVSTAT, SMBSLV_STAT_CLEAR); asf_write8(SMBHSTSTAT, SMBHST_STAT_CLEAR); asf_write8(SMBSLVSTAT, SMBSLV_STAT_CLEAR); } /* Before console init */ void bootblock_fch_early_init(void) { int reboot = 0; sb_enable_rom(); sb_lpc_port80(); sb_lpc_decode(); sb_lpc_early_setup(); sb_spibase(); sb_disable_4dw_burst(); /* Must be disabled on CZ(ST) */ sb_acpi_mmio_decode(); fch_smbus_init(); sb_enable_cf9_io(); setup_spread_spectrum(&reboot); setup_misc(&reboot); if (reboot) warm_reset(); sb_enable_legacy_io(); enable_aoac_devices(); } static void print_num_status_bits(int num_bits, uint32_t status, const char *const bit_names[]) { int i; if (!status) return; for (i = num_bits - 1; i >= 0; i--) { if (status & (1 << i)) { if (bit_names[i]) printk(BIOS_DEBUG, "%s ", bit_names[i]); else printk(BIOS_DEBUG, "BIT%d ", i); } } } static void sb_print_pmxc0_status(void) { /* PMxC0 S5/Reset Status shows the source of previous reset. */ uint32_t pmxc0_status = pm_read32(PM_RST_STATUS); static const char *const pmxc0_status_bits[32] = { [0] = "ThermalTrip", [1] = "FourSecondPwrBtn", [2] = "Shutdown", [3] = "ThermalTripFromTemp", [4] = "RemotePowerDownFromASF", [5] = "ShutDownFan0", [16] = "UserRst", [17] = "SoftPciRst", [18] = "DoInit", [19] = "DoReset", [20] = "DoFullReset", [21] = "SleepReset", [22] = "KbReset", [23] = "LtReset", [24] = "FailBootRst", [25] = "WatchdogIssueReset", [26] = "RemoteResetFromASF", [27] = "SyncFlood", [28] = "HangReset", [29] = "EcWatchdogRst", }; printk(BIOS_DEBUG, "PMxC0 STATUS: 0x%x ", pmxc0_status); print_num_status_bits(ARRAY_SIZE(pmxc0_status_bits), pmxc0_status, pmxc0_status_bits); printk(BIOS_DEBUG, "\n"); } /* After console init */ void bootblock_fch_init(void) { sb_print_pmxc0_status(); } void sb_enable(struct device *dev) { printk(BIOS_DEBUG, "%s\n", __func__); } static void sb_init_acpi_ports(void) { u32 reg; /* We use some of these ports in SMM regardless of whether or not * ACPI tables are generated. Enable these ports indiscriminately. */ pm_write16(PM_EVT_BLK, ACPI_PM_EVT_BLK); pm_write16(PM1_CNT_BLK, ACPI_PM1_CNT_BLK); pm_write16(PM_TMR_BLK, ACPI_PM_TMR_BLK); pm_write16(PM_GPE0_BLK, ACPI_GPE0_BLK); /* CpuControl is in \_PR.CP00, 6 bytes */ pm_write16(PM_CPU_CTRL, ACPI_CPU_CONTROL); if (CONFIG(HAVE_SMI_HANDLER)) { /* APMC - SMI Command Port */ pm_write16(PM_ACPI_SMI_CMD, APM_CNT); configure_smi(SMITYPE_SMI_CMD_PORT, SMI_MODE_SMI); /* SMI on SlpTyp requires sending SMI before completion * response of the I/O write. The BKDG also specifies * clearing ForceStpClkRetry for SMI trapping. */ reg = pm_read32(PM_PCI_CTRL); reg |= FORCE_SLPSTATE_RETRY; reg &= ~FORCE_STPCLK_RETRY; pm_write32(PM_PCI_CTRL, reg); /* Disable SlpTyp feature */ reg = pm_read8(PM_RST_CTRL1); reg &= ~SLPTYPE_CONTROL_EN; pm_write8(PM_RST_CTRL1, reg); configure_smi(SMITYPE_SLP_TYP, SMI_MODE_SMI); } else { pm_write16(PM_ACPI_SMI_CMD, 0); } /* Decode ACPI registers and enable standard features */ pm_write8(PM_ACPI_CONF, PM_ACPI_DECODE_STD | PM_ACPI_GLOBAL_EN | PM_ACPI_RTC_EN_EN | PM_ACPI_TIMER_EN_EN); } static uint16_t reset_pm1_status(void) { uint16_t pm1_sts = acpi_read16(MMIO_ACPI_PM1_STS); acpi_write16(MMIO_ACPI_PM1_STS, pm1_sts); return pm1_sts; } static uint16_t print_pm1_status(uint16_t pm1_sts) { static const char *const pm1_sts_bits[16] = { [0] = "TMROF", [4] = "BMSTATUS", [5] = "GBL", [8] = "PWRBTN", [10] = "RTC", [14] = "PCIEXPWAK", [15] = "WAK", }; if (!pm1_sts) return 0; printk(BIOS_DEBUG, "PM1_STS: "); print_num_status_bits(ARRAY_SIZE(pm1_sts_bits), pm1_sts, pm1_sts_bits); printk(BIOS_DEBUG, "\n"); return pm1_sts; } static void sb_log_pm1_status(uint16_t pm1_sts) { if (!CONFIG(ELOG)) return; if (pm1_sts & WAK_STS) elog_add_event_byte(ELOG_TYPE_ACPI_WAKE, acpi_is_wakeup_s3() ? ACPI_S3 : ACPI_S5); if (pm1_sts & PWRBTN_STS) elog_add_event_wake(ELOG_WAKE_SOURCE_PWRBTN, 0); if (pm1_sts & RTC_STS) elog_add_event_wake(ELOG_WAKE_SOURCE_RTC, 0); if (pm1_sts & PCIEXPWAK_STS) elog_add_event_wake(ELOG_WAKE_SOURCE_PCIE, 0); } static void sb_save_sws(uint16_t pm1_status) { struct soc_power_reg *sws; uint32_t reg32; uint16_t reg16; sws = cbmem_add(CBMEM_ID_POWER_STATE, sizeof(struct soc_power_reg)); if (sws == NULL) return; sws->pm1_sts = pm1_status; sws->pm1_en = acpi_read16(MMIO_ACPI_PM1_EN); reg32 = acpi_read32(MMIO_ACPI_GPE0_STS); acpi_write32(MMIO_ACPI_GPE0_STS, reg32); sws->gpe0_sts = reg32; sws->gpe0_en = acpi_read32(MMIO_ACPI_GPE0_EN); reg16 = acpi_read16(MMIO_ACPI_PM1_CNT_BLK); reg16 &= SLP_TYP; sws->wake_from = reg16 >> SLP_TYP_SHIFT; } static void sb_clear_pm1_status(void) { uint16_t pm1_sts = reset_pm1_status(); sb_save_sws(pm1_sts); sb_log_pm1_status(pm1_sts); print_pm1_status(pm1_sts); } static int get_index_bit(uint32_t value, uint16_t limit) { uint16_t i; uint32_t t; if (limit >= TOTAL_BITS(uint32_t)) return -1; /* get a mask of valid bits. Ex limit = 3, set bits 0-2 */ t = (1 << limit) - 1; if ((value & t) == 0) return -1; t = 1; for (i = 0; i < limit; i++) { if (value & t) break; t <<= 1; } return i; } static void set_nvs_sws(void *unused) { struct soc_power_reg *sws; struct global_nvs_t *gnvs; int index; sws = cbmem_find(CBMEM_ID_POWER_STATE); if (sws == NULL) return; gnvs = cbmem_find(CBMEM_ID_ACPI_GNVS); if (gnvs == NULL) return; index = get_index_bit(sws->pm1_sts & sws->pm1_en, PM1_LIMIT); if (index < 0) gnvs->pm1i = ~0ULL; else gnvs->pm1i = index; index = get_index_bit(sws->gpe0_sts & sws->gpe0_en, GPE0_LIMIT); if (index < 0) gnvs->gpei = ~0ULL; else gnvs->gpei = index; } BOOT_STATE_INIT_ENTRY(BS_OS_RESUME, BS_ON_ENTRY, set_nvs_sws, NULL); void southbridge_init(void *chip_info) { sb_init_acpi_ports(); sb_clear_pm1_status(); } static void set_sb_final_nvs(void) { uintptr_t amdfw_rom; uintptr_t xhci_fw; uintptr_t fwaddr; size_t fwsize; const struct device *sd, *sata; struct global_nvs_t *gnvs = cbmem_find(CBMEM_ID_ACPI_GNVS); if (gnvs == NULL) return; gnvs->aoac.ic0e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_I2C0); gnvs->aoac.ic1e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_I2C1); gnvs->aoac.ic2e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_I2C2); gnvs->aoac.ic3e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_I2C3); gnvs->aoac.ut0e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_UART0); gnvs->aoac.ut1e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_UART1); gnvs->aoac.ehce = is_aoac_device_enabled(FCH_AOAC_D3_STATE_USB2); gnvs->aoac.xhce = is_aoac_device_enabled(FCH_AOAC_D3_STATE_USB3); /* Rely on these being in sync with devicetree */ sd = pcidev_path_on_root(SD_DEVFN); gnvs->aoac.sd_e = sd && sd->enabled ? 1 : 0; sata = pcidev_path_on_root(SATA_DEVFN); gnvs->aoac.st_e = sata && sata->enabled ? 1 : 0; gnvs->aoac.espi = 1; amdfw_rom = 0x20000 - (0x80000 << CONFIG_AMD_FWM_POSITION_INDEX); xhci_fw = read32((void *)(amdfw_rom + XHCI_FW_SIG_OFFSET)); fwaddr = 2 + read16((void *)(xhci_fw + XHCI_FW_ADDR_OFFSET + XHCI_FW_BOOTRAM_SIZE)); fwsize = read16((void *)(xhci_fw + XHCI_FW_SIZE_OFFSET + XHCI_FW_BOOTRAM_SIZE)); gnvs->fw00 = 0; gnvs->fw01 = ((32 * KiB) << 16) + 0; gnvs->fw02 = fwaddr + XHCI_FW_BOOTRAM_SIZE; gnvs->fw03 = fwsize << 16; gnvs->eh10 = pci_read_config32(SOC_EHCI1_DEV, PCI_BASE_ADDRESS_0) & ~PCI_BASE_ADDRESS_MEM_ATTR_MASK; } void southbridge_final(void *chip_info) { uint8_t restored_power = PM_S5_AT_POWER_RECOVERY; if (CONFIG(MAINBOARD_POWER_RESTORE)) restored_power = PM_RESTORE_S0_IF_PREV_S0; pm_write8(PM_RTC_SHADOW, restored_power); set_sb_final_nvs(); } /* * Update the PCI devices with a valid IRQ number * that is set in the mainboard PCI_IRQ structures. */ static void set_pci_irqs(void *unused) { /* Write PCI_INTR regs 0xC00/0xC01 */ write_pci_int_table(); /* Write IRQs for all devicetree enabled devices */ write_pci_cfg_irqs(); } /* * Hook this function into the PCI state machine * on entry into BS_DEV_ENABLE. */ BOOT_STATE_INIT_ENTRY(BS_DEV_ENABLE, BS_ON_ENTRY, set_pci_irqs, NULL);