/* * This file is part of the coreboot project. * * Copyright (C) 2010-2017 Advanced Micro Devices, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Table of devices that need their AOAC registers enabled and waited * upon (usually about .55 milliseconds). Instead of individual delays * waiting for each device to become available, a single delay will be * executed. */ const static struct stoneyridge_aoac aoac_devs[] = { { (FCH_AOAC_D3_CONTROL_UART0 + CONFIG_UART_FOR_CONSOLE * 2), (FCH_AOAC_D3_STATE_UART0 + CONFIG_UART_FOR_CONSOLE * 2) }, { FCH_AOAC_D3_CONTROL_AMBA, FCH_AOAC_D3_STATE_AMBA }, { FCH_AOAC_D3_CONTROL_I2C0, FCH_AOAC_D3_STATE_I2C0 }, { FCH_AOAC_D3_CONTROL_I2C1, FCH_AOAC_D3_STATE_I2C1 }, { FCH_AOAC_D3_CONTROL_I2C2, FCH_AOAC_D3_STATE_I2C2 }, { FCH_AOAC_D3_CONTROL_I2C3, FCH_AOAC_D3_STATE_I2C3 } }; static int is_sata_config(void) { return !((CONFIG_STONEYRIDGE_SATA_MODE == SataNativeIde) || (CONFIG_STONEYRIDGE_SATA_MODE == SataLegacyIde)); } static inline int sb_sata_enable(void) { /* True if IDE or AHCI. */ return (CONFIG_STONEYRIDGE_SATA_MODE == SataNativeIde) || (CONFIG_STONEYRIDGE_SATA_MODE == SataAhci); } static inline int sb_ide_enable(void) { /* True if IDE or LEGACY IDE. */ return (CONFIG_STONEYRIDGE_SATA_MODE == SataNativeIde) || (CONFIG_STONEYRIDGE_SATA_MODE == SataLegacyIde); } void SetFchResetParams(FCH_RESET_INTERFACE *params) { params->Xhci0Enable = IS_ENABLED(CONFIG_STONEYRIDGE_XHCI_ENABLE); params->SataEnable = sb_sata_enable(); params->IdeEnable = sb_ide_enable(); } void SetFchEnvParams(FCH_INTERFACE *params) { params->AzaliaController = AzEnable; params->SataClass = CONFIG_STONEYRIDGE_SATA_MODE; params->SataEnable = is_sata_config(); params->IdeEnable = !params->SataEnable; params->SataIdeMode = (CONFIG_STONEYRIDGE_SATA_MODE == SataLegacyIde); } void SetFchMidParams(FCH_INTERFACE *params) { SetFchEnvParams(params); } /* * Table of APIC register index and associated IRQ name. Using IDX_XXX_NAME * provides a visible association with the index, therefore helping * maintainability of table. If a new index/name is defined in * amd_pci_int_defs.h, just add the pair at the end of this table. * Order is not important. */ const static struct irq_idx_name irq_association[] = { { PIRQ_A, "INTA#" }, { PIRQ_B, "INTB#" }, { PIRQ_C, "INTC#" }, { PIRQ_D, "INTD#" }, { PIRQ_E, "INTE#" }, { PIRQ_F, "INTF#" }, { PIRQ_G, "INTG#" }, { PIRQ_H, "INTH#" }, { PIRQ_MISC, "Misc" }, { PIRQ_MISC0, "Misc0" }, { PIRQ_MISC1, "Misc1" }, { PIRQ_MISC2, "Misc2" }, { PIRQ_SIRQA, "Ser IRQ INTA" }, { PIRQ_SIRQB, "Ser IRQ INTB" }, { PIRQ_SIRQC, "Ser IRQ INTC" }, { PIRQ_SIRQD, "Ser IRQ INTD" }, { PIRQ_SCI, "SCI" }, { PIRQ_SMBUS, "SMBUS" }, { PIRQ_ASF, "ASF" }, { PIRQ_HDA, "HDA" }, { PIRQ_FC, "FC" }, { PIRQ_PMON, "PerMon" }, { PIRQ_SD, "SD" }, { PIRQ_SDIO, "SDIOt" }, { PIRQ_IMC0, "IMC INT0" }, { PIRQ_IMC1, "IMC INT1" }, { PIRQ_IMC2, "IMC INT2" }, { PIRQ_IMC3, "IMC INT3" }, { PIRQ_IMC4, "IMC INT4" }, { PIRQ_IMC5, "IMC INT5" }, { PIRQ_EHCI, "EHCI" }, { PIRQ_XHCI, "XHCI" }, { PIRQ_SATA, "SATA" }, { PIRQ_GPIO, "GPIO" }, { PIRQ_I2C0, "I2C0" }, { PIRQ_I2C1, "I2C1" }, { PIRQ_I2C2, "I2C2" }, { PIRQ_I2C3, "I2C3" }, { PIRQ_UART0, "UART0" }, { PIRQ_UART1, "UART1" }, }; /* * Structure to simplify code obtaining the total of used wide IO * registers and the size assigned to each. */ static struct wide_io_ioport_and_bits { uint32_t enable; uint16_t port; uint8_t alt; } wio_io_en[TOTAL_WIDEIO_PORTS] = { { LPC_WIDEIO0_ENABLE, LPC_WIDEIO_GENERIC_PORT, LPC_ALT_WIDEIO0_ENABLE }, { LPC_WIDEIO1_ENABLE, LPC_WIDEIO1_GENERIC_PORT, LPC_ALT_WIDEIO1_ENABLE }, { LPC_WIDEIO2_ENABLE, LPC_WIDEIO2_GENERIC_PORT, LPC_ALT_WIDEIO2_ENABLE } }; const struct irq_idx_name *sb_get_apic_reg_association(size_t *size) { *size = ARRAY_SIZE(irq_association); return irq_association; } /** * @brief Find the size of a particular wide IO * * @param index = index of desired wide IO * * @return size of desired wide IO */ uint16_t sb_wideio_size(int index) { uint32_t enable_register; uint16_t size = 0; uint8_t alternate_register; if (index >= TOTAL_WIDEIO_PORTS) return size; enable_register = pci_read_config32(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE); alternate_register = pci_read_config8(SOC_LPC_DEV, LPC_ALT_WIDEIO_RANGE_ENABLE); if (enable_register & wio_io_en[index].enable) size = (alternate_register & wio_io_en[index].alt) ? 16 : 512; return size; } /** * @brief Identify if any LPC wide IO is covering the IO range * * @param start = start of IO range * @param size = size of IO range * * @return Index of wide IO covering the range or error */ int sb_find_wideio_range(uint16_t start, uint16_t size) { uint32_t enable_register; int i, index = WIDEIO_RANGE_ERROR; uint16_t end, current_size, start_wideio, end_wideio; end = start + size; enable_register = pci_read_config32(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE); for (i = 0; i < TOTAL_WIDEIO_PORTS; i++) { current_size = sb_wideio_size(i); if (current_size == 0) continue; start_wideio = pci_read_config16(SOC_LPC_DEV, wio_io_en[i].port); end_wideio = start_wideio + current_size; if ((start >= start_wideio) && (end <= end_wideio)) { index = i; break; } } return index; } /** * @brief Program a LPC wide IO to support an IO range * * @param start = start of range to be routed through wide IO * @param size = size of range to be routed through wide IO * * @return Index of wide IO register used or error */ int sb_set_wideio_range(uint16_t start, uint16_t size) { int i, index = WIDEIO_RANGE_ERROR; uint32_t enable_register; uint8_t alternate_register; enable_register = pci_read_config32(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE); alternate_register = pci_read_config8(SOC_LPC_DEV, LPC_ALT_WIDEIO_RANGE_ENABLE); for (i = 0; i < TOTAL_WIDEIO_PORTS; i++) { if (enable_register & wio_io_en[i].enable) continue; index = i; pci_write_config16(SOC_LPC_DEV, wio_io_en[i].port, start); enable_register |= wio_io_en[i].enable; pci_write_config32(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE, enable_register); if (size <= 16) alternate_register |= wio_io_en[i].alt; else alternate_register &= ~wio_io_en[i].alt; pci_write_config8(SOC_LPC_DEV, LPC_ALT_WIDEIO_RANGE_ENABLE, alternate_register); break; } return index; } static void power_on_aoac_device(int aoac_device_control_register) { uint8_t byte; uint8_t *register_pointer = (uint8_t *)(uintptr_t)AOAC_MMIO_BASE + aoac_device_control_register; /* Power on the UART and AMBA devices */ byte = read8(register_pointer); byte |= FCH_AOAC_PWR_ON_DEV; write8(register_pointer, byte); } static bool is_aoac_device_enabled(int aoac_device_status_register) { uint8_t byte; byte = read8((uint8_t *)(uintptr_t)AOAC_MMIO_BASE + aoac_device_status_register); byte &= (FCH_AOAC_PWR_RST_STATE | FCH_AOAC_RST_CLK_OK_STATE); if (byte == (FCH_AOAC_PWR_RST_STATE | FCH_AOAC_RST_CLK_OK_STATE)) return true; else return false; } void enable_aoac_devices(void) { bool status; int i; for (i = 0; i < ARRAY_SIZE(aoac_devs); i++) power_on_aoac_device(aoac_devs[i].enable); /* Wait for AOAC devices to indicate power and clock OK */ do { udelay(100); status = true; for (i = 0; i < ARRAY_SIZE(aoac_devs); i++) status &= is_aoac_device_enabled(aoac_devs[i].status); } while (!status); } void sb_pci_port80(void) { u8 byte; byte = pci_read_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DEC_EN_HIGH); byte &= ~DECODE_IO_PORT_ENABLE4_H; /* disable lpc port 80 */ pci_write_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DEC_EN_HIGH, byte); } void sb_lpc_port80(void) { u8 byte; /* Enable LPC controller */ outb(PM_LPC_GATING, PM_INDEX); byte = inb(PM_DATA); byte |= PM_LPC_ENABLE; outb(PM_LPC_GATING, PM_INDEX); outb(byte, PM_DATA); /* Enable port 80 LPC decode in pci function 3 configuration space. */ byte = pci_read_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DEC_EN_HIGH); byte |= DECODE_IO_PORT_ENABLE4_H; /* enable port 80 */ pci_write_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DEC_EN_HIGH, byte); } void sb_lpc_decode(void) { u32 tmp = 0; /* Enable I/O decode to LPC bus */ tmp = DECODE_ENABLE_PARALLEL_PORT0 | DECODE_ENABLE_PARALLEL_PORT2 | DECODE_ENABLE_PARALLEL_PORT4 | DECODE_ENABLE_SERIAL_PORT0 | DECODE_ENABLE_SERIAL_PORT1 | DECODE_ENABLE_SERIAL_PORT2 | DECODE_ENABLE_SERIAL_PORT3 | DECODE_ENABLE_SERIAL_PORT4 | DECODE_ENABLE_SERIAL_PORT5 | DECODE_ENABLE_SERIAL_PORT6 | DECODE_ENABLE_SERIAL_PORT7 | DECODE_ENABLE_AUDIO_PORT0 | DECODE_ENABLE_AUDIO_PORT1 | DECODE_ENABLE_AUDIO_PORT2 | DECODE_ENABLE_AUDIO_PORT3 | DECODE_ENABLE_MSS_PORT2 | DECODE_ENABLE_MSS_PORT3 | DECODE_ENABLE_FDC_PORT0 | DECODE_ENABLE_FDC_PORT1 | DECODE_ENABLE_GAME_PORT | DECODE_ENABLE_KBC_PORT | DECODE_ENABLE_ACPIUC_PORT | DECODE_ENABLE_ADLIB_PORT; pci_write_config32(SOC_LPC_DEV, LPC_IO_PORT_DECODE_ENABLE, tmp); } void sb_acpi_mmio_decode(void) { uint8_t byte; /* Enable ACPI MMIO range 0xfed80000 - 0xfed81fff */ outb(PM_ISA_CONTROL, PM_INDEX); byte = inb(PM_DATA); byte |= MMIO_EN; outb(PM_ISA_CONTROL, PM_INDEX); outb(byte, PM_DATA); } static void sb_enable_cf9_io(void) { uint32_t reg = pm_read32(PM_DECODE_EN); pm_write32(PM_DECODE_EN, reg | CF9_IO_EN); } void sb_clk_output_48Mhz(void) { u32 ctrl; u32 *misc_clk_cntl_1_ptr = (u32 *)(uintptr_t)(MISC_MMIO_BASE + MISC_MISC_CLK_CNTL_1); /* * Enable the X14M_25M_48M_OSC pin and leaving it at it's default so * 48Mhz will be on ball AP13 (FT3b package) */ ctrl = read32(misc_clk_cntl_1_ptr); /* clear the OSCOUT1_ClkOutputEnb to enable the 48 Mhz clock */ ctrl &= ~OSCOUT1_CLK_OUTPUT_ENB; write32(misc_clk_cntl_1_ptr, ctrl); } static uintptr_t sb_spibase(void) { u32 base, enables; /* Make sure the base address is predictable */ base = pci_read_config32(SOC_LPC_DEV, SPIROM_BASE_ADDRESS_REGISTER); enables = base & 0xf; base &= ~0x3f; if (!base) { base = SPI_BASE_ADDRESS; pci_write_config32(SOC_LPC_DEV, SPIROM_BASE_ADDRESS_REGISTER, base | enables | SPI_ROM_ENABLE); /* PCI_COMMAND_MEMORY is read-only and enabled. */ } return (uintptr_t)base; } void sb_set_spi100(u16 norm, u16 fast, u16 alt, u16 tpm) { uintptr_t base = sb_spibase(); write16((void *)base + SPI100_SPEED_CONFIG, (norm << SPI_NORM_SPEED_NEW_SH) | (fast << SPI_FAST_SPEED_NEW_SH) | (alt << SPI_ALT_SPEED_NEW_SH) | (tpm << SPI_TPM_SPEED_NEW_SH)); write16((void *)base + SPI100_ENABLE, SPI_USE_SPI100); } void sb_disable_4dw_burst(void) { uintptr_t base = sb_spibase(); write16((void *)base + SPI100_HOST_PREF_CONFIG, read16((void *)base + SPI100_HOST_PREF_CONFIG) & ~SPI_RD4DW_EN_HOST); } void sb_read_mode(u32 mode) { uintptr_t base = sb_spibase(); write32((void *)base + SPI_CNTRL0, (read32((void *)base + SPI_CNTRL0) & ~SPI_READ_MODE_MASK) | mode); } /* * Enable FCH to decode TPM associated Memory and IO regions * * Enable decoding of TPM cycles defined in TPM 1.2 spec * Enable decoding of legacy TPM addresses: IO addresses 0x7f- * 0x7e and 0xef-0xee. * This function should be called if TPM is connected in any way to the FCH and * conforms to the regions decoded. * Absent any other routing configuration the TPM cycles will be claimed by the * LPC bus */ void sb_tpm_decode(void) { u32 value; value = pci_read_config32(SOC_LPC_DEV, LPC_TRUSTED_PLATFORM_MODULE); value |= TPM_12_EN | TPM_LEGACY_EN; pci_write_config32(SOC_LPC_DEV, LPC_TRUSTED_PLATFORM_MODULE, value); } /* * Enable FCH to decode TPM associated Memory and IO regions to SPI * * This should be used if TPM is connected to SPI bus. * Assumes SPI address space is already configured via a call to sb_spibase(). */ void sb_tpm_decode_spi(void) { /* Enable TPM decoding to FCH */ sb_tpm_decode(); /* Route TPM accesses to SPI */ u32 spibase = pci_read_config32(SOC_LPC_DEV, SPIROM_BASE_ADDRESS_REGISTER); pci_write_config32(SOC_LPC_DEV, SPIROM_BASE_ADDRESS_REGISTER, spibase | ROUTE_TPM_2_SPI); } /* * Enable 4MB (LPC) ROM access at 0xFFC00000 - 0xFFFFFFFF. * * Hardware should enable LPC ROM by pin straps. This function does not * handle the theoretically possible PCI ROM, FWH, or SPI ROM configurations. * * The southbridge power-on default is to map 512K ROM space. * */ void sb_enable_rom(void) { u8 reg8; /* * Decode variable LPC ROM address ranges 1 and 2. * Bits 3-4 are not defined in any publicly available datasheet */ reg8 = pci_read_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE); reg8 |= (1 << 3) | (1 << 4); pci_write_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE, reg8); /* * LPC ROM address range 1: * Enable LPC ROM range mirroring start at 0x000e(0000). */ pci_write_config16(SOC_LPC_DEV, ROM_ADDRESS_RANGE1_START, 0x000e); /* Enable LPC ROM range mirroring end at 0x000f(ffff). */ pci_write_config16(SOC_LPC_DEV, ROM_ADDRESS_RANGE1_END, 0x000f); /* * LPC ROM address range 2: * * Enable LPC ROM range start at: * 0xfff8(0000): 512KB * 0xfff0(0000): 1MB * 0xffe0(0000): 2MB * 0xffc0(0000): 4MB */ pci_write_config16(SOC_LPC_DEV, ROM_ADDRESS_RANGE2_START, 0x10000 - (CONFIG_COREBOOT_ROMSIZE_KB >> 6)); /* Enable LPC ROM range end at 0xffff(ffff). */ pci_write_config16(SOC_LPC_DEV, ROM_ADDRESS_RANGE2_END, 0xffff); } static void sb_lpc_early_setup(void) { uint32_t dword; /* Enable SPI prefetch */ dword = pci_read_config32(SOC_LPC_DEV, LPC_ROM_DMA_EC_HOST_CONTROL); dword |= SPI_FROM_HOST_PREFETCH_EN | SPI_FROM_USB_PREFETCH_EN; pci_write_config32(SOC_LPC_DEV, LPC_ROM_DMA_EC_HOST_CONTROL, dword); if (IS_ENABLED(CONFIG_STONEYRIDGE_LEGACY_FREE)) { /* Decode SIOs at 2E/2F and 4E/4F */ dword = pci_read_config32(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE); dword |= DECODE_ALTERNATE_SIO_ENABLE | DECODE_SIO_ENABLE; pci_write_config32(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE, dword); } } void bootblock_fch_early_init(void) { sb_enable_rom(); sb_lpc_port80(); sb_lpc_decode(); sb_lpc_early_setup(); sb_spibase(); sb_disable_4dw_burst(); /* Must be disabled on CZ(ST) */ sb_acpi_mmio_decode(); sb_enable_cf9_io(); enable_aoac_devices(); } void sb_enable(device_t dev) { printk(BIOS_DEBUG, "%s\n", __func__); } static void sb_init_acpi_ports(void) { u32 reg; /* We use some of these ports in SMM regardless of whether or not * ACPI tables are generated. Enable these ports indiscriminately. */ pm_write16(PM_EVT_BLK, ACPI_PM_EVT_BLK); pm_write16(PM1_CNT_BLK, ACPI_PM1_CNT_BLK); pm_write16(PM_TMR_BLK, ACPI_PM_TMR_BLK); pm_write16(PM_GPE0_BLK, ACPI_GPE0_BLK); /* CpuControl is in \_PR.CP00, 6 bytes */ pm_write16(PM_CPU_CTRL, ACPI_CPU_CONTROL); if (IS_ENABLED(CONFIG_HAVE_SMI_HANDLER)) { /* APMC - SMI Command Port */ pm_write16(PM_ACPI_SMI_CMD, APM_CNT); configure_smi(SMITYPE_SMI_CMD_PORT, SMI_MODE_SMI); /* SMI on SlpTyp requires sending SMI before completion * response of the I/O write. The BKDG also specifies * clearing ForceStpClkRetry for SMI trapping. */ reg = pm_read32(PM_PCI_CTRL); reg |= FORCE_SLPSTATE_RETRY; reg &= ~FORCE_STPCLK_RETRY; pm_write32(PM_PCI_CTRL, reg); /* Disable SlpTyp feature */ reg = pm_read8(PM_RST_CTRL1); reg &= ~SLPTYPE_CONTROL_EN; pm_write8(PM_RST_CTRL1, reg); configure_smi(SMITYPE_SLP_TYP, SMI_MODE_SMI); } else { pm_write16(PM_ACPI_SMI_CMD, 0); } /* Decode ACPI registers and enable standard features */ pm_write8(PM_ACPI_CONF, PM_ACPI_DECODE_STD | PM_ACPI_GLOBAL_EN | PM_ACPI_RTC_EN_EN | PM_ACPI_TIMER_EN_EN); } static void print_num_status_bits(int num_bits, uint32_t status, const char *const bit_names[]) { int i; if (!status) return; for (i = num_bits - 1; i >= 0; i--) { if (status & (1 << i)) { if (bit_names[i]) printk(BIOS_DEBUG, "%s ", bit_names[i]); else printk(BIOS_DEBUG, "BIT%d ", i); } } } static uint16_t reset_pm1_status(void) { uint16_t pm1_sts = inw(ACPI_PM1_STS); outw(pm1_sts, ACPI_PM1_STS); return pm1_sts; } static uint16_t print_pm1_status(uint16_t pm1_sts) { static const char *const pm1_sts_bits[] = { [0] = "TMROF", [4] = "BMSTATUS", [5] = "GBL", [8] = "PWRBTN", [10] = "RTC", [14] = "PCIEXPWAK", [15] = "WAK", }; if (!pm1_sts) return 0; printk(BIOS_SPEW, "PM1_STS: "); print_num_status_bits(ARRAY_SIZE(pm1_sts_bits), pm1_sts, pm1_sts_bits); printk(BIOS_SPEW, "\n"); return pm1_sts; } static void sb_log_pm1_status(uint16_t pm1_sts) { if (!IS_ENABLED(CONFIG_ELOG)) return; if (pm1_sts & WAK_STS) elog_add_event_byte(ELOG_TYPE_ACPI_WAKE, acpi_is_wakeup_s3() ? ACPI_S3 : ACPI_S5); if (pm1_sts & PWRBTN_STS) elog_add_event_wake(ELOG_WAKE_SOURCE_PWRBTN, 0); if (pm1_sts & RTC_STS) elog_add_event_wake(ELOG_WAKE_SOURCE_RTC, 0); if (pm1_sts & PCIEXPWAK_STS) elog_add_event_wake(ELOG_WAKE_SOURCE_PCIE, 0); } static void sb_save_sws(uint16_t pm1_status) { struct soc_power_reg *sws; uint32_t reg32; uint16_t reg16; sws = cbmem_add(CBMEM_ID_POWER_STATE, sizeof(struct soc_power_reg)); if (sws == NULL) return; sws->pm1_sts = pm1_status; sws->pm1_en = inw(ACPI_PM1_EN); reg32 = inl(ACPI_GPE0_STS); outl(ACPI_GPE0_STS, reg32); sws->gpe0_sts = reg32; sws->gpe0_en = inl(ACPI_GPE0_EN); reg16 = inw(ACPI_PM1_CNT_BLK); reg16 &= SLP_TYP; sws->wake_from = reg16 >> SLP_TYP_SHIFT; } static void sb_clear_pm1_status(void) { uint16_t pm1_sts = reset_pm1_status(); sb_save_sws(pm1_sts); sb_log_pm1_status(pm1_sts); print_pm1_status(pm1_sts); } static int get_index_bit(uint32_t value, uint16_t limit) { uint16_t i; uint32_t t; if (limit >= TOTAL_BITS(uint32_t)) return -1; /* get a mask of valid bits. Ex limit = 3, set bits 0-2 */ t = (1 << limit) - 1; if ((value & t) == 0) return -1; t = 1; for (i = 0; i < limit; i++) { if (value & t) break; t <<= 1; } return i; } static void set_nvs_sws(void *unused) { struct soc_power_reg *sws; struct global_nvs_t *gnvs; int index; sws = cbmem_find(CBMEM_ID_POWER_STATE); if (sws == NULL) return; gnvs = cbmem_find(CBMEM_ID_ACPI_GNVS); if (gnvs == NULL) return; index = get_index_bit(sws->pm1_sts & sws->pm1_en, PM1_LIMIT); if (index < 0) gnvs->pm1i = ~0ULL; else gnvs->pm1i = index; index = get_index_bit(sws->gpe0_sts & sws->gpe0_en, GPE0_LIMIT); if (index < 0) gnvs->gpei = ~0ULL; else gnvs->gpei = index; } BOOT_STATE_INIT_ENTRY(BS_OS_RESUME, BS_ON_ENTRY, set_nvs_sws, NULL); void southbridge_init(void *chip_info) { sb_init_acpi_ports(); sb_clear_pm1_status(); } void southbridge_final(void *chip_info) { uint8_t restored_power = PM_S5_AT_POWER_RECOVERY; if (IS_ENABLED(CONFIG_STONEYRIDGE_IMC_FWM)) { agesawrapper_fchecfancontrolservice(); if (!IS_ENABLED(CONFIG_ACPI_ENABLE_THERMAL_ZONE)) enable_imc_thermal_zone(); } if (IS_ENABLED(CONFIG_MAINBOARD_POWER_RESTORE)) restored_power = PM_RESTORE_S0_IF_PREV_S0; pm_write8(PM_RTC_SHADOW, restored_power); } /* * Update the PCI devices with a valid IRQ number * that is set in the mainboard PCI_IRQ structures. */ static void set_pci_irqs(void *unused) { /* Write PCI_INTR regs 0xC00/0xC01 */ write_pci_int_table(); /* Write IRQs for all devicetree enabled devices */ write_pci_cfg_irqs(); } /* * Hook this function into the PCI state machine * on entry into BS_DEV_ENABLE. */ BOOT_STATE_INIT_ENTRY(BS_DEV_ENABLE, BS_ON_ENTRY, set_pci_irqs, NULL);