/* SPDX-License-Identifier: GPL-2.0-only */

#include <amdblocks/spi.h>
#include <console/console.h>
#include <device/mmio.h>
#include <bootstate.h>
#include <cpu/x86/smm.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ops.h>
#include <cbmem.h>
#include <acpi/acpi_gnvs.h>
#include <amdblocks/amd_pci_util.h>
#include <amdblocks/agesawrapper.h>
#include <amdblocks/reset.h>
#include <amdblocks/acpimmio.h>
#include <amdblocks/lpc.h>
#include <amdblocks/acpi.h>
#include <soc/southbridge.h>
#include <soc/smi.h>
#include <soc/amd_pci_int_defs.h>
#include <delay.h>
#include <soc/pci_devs.h>
#include <agesa_headers.h>
#include <soc/nvs.h>
#include <types.h>

/*
 * Table of devices that need their AOAC registers enabled and waited
 * upon (usually about .55 milliseconds). Instead of individual delays
 * waiting for each device to become available, a single delay will be
 * executed.
 */
static const struct stoneyridge_aoac aoac_devs[] = {
	{ (FCH_AOAC_D3_CONTROL_UART0 + CONFIG_UART_FOR_CONSOLE * 2),
		(FCH_AOAC_D3_STATE_UART0 + CONFIG_UART_FOR_CONSOLE * 2) },
	{ FCH_AOAC_D3_CONTROL_AMBA, FCH_AOAC_D3_STATE_AMBA },
	{ FCH_AOAC_D3_CONTROL_I2C0, FCH_AOAC_D3_STATE_I2C0 },
	{ FCH_AOAC_D3_CONTROL_I2C1, FCH_AOAC_D3_STATE_I2C1 },
	{ FCH_AOAC_D3_CONTROL_I2C2, FCH_AOAC_D3_STATE_I2C2 },
	{ FCH_AOAC_D3_CONTROL_I2C3, FCH_AOAC_D3_STATE_I2C3 }
};

static int is_sata_config(void)
{
	return !((SataNativeIde == CONFIG_STONEYRIDGE_SATA_MODE)
			|| (SataLegacyIde == CONFIG_STONEYRIDGE_SATA_MODE));
}

static inline int sb_sata_enable(void)
{
	/* True if IDE or AHCI. */
	return (SataNativeIde == CONFIG_STONEYRIDGE_SATA_MODE) ||
		(SataAhci == CONFIG_STONEYRIDGE_SATA_MODE);
}

static inline int sb_ide_enable(void)
{
	/* True if IDE or LEGACY IDE. */
	return (SataNativeIde == CONFIG_STONEYRIDGE_SATA_MODE) ||
		(SataLegacyIde == CONFIG_STONEYRIDGE_SATA_MODE);
}

void SetFchResetParams(FCH_RESET_INTERFACE *params)
{
	const struct device *dev = pcidev_path_on_root(SATA_DEVFN);
	params->Xhci0Enable = CONFIG(STONEYRIDGE_XHCI_ENABLE);
	if (dev && dev->enabled) {
		params->SataEnable = sb_sata_enable();
		params->IdeEnable = sb_ide_enable();
	} else {
		params->SataEnable = FALSE;
		params->IdeEnable = FALSE;
	}
}

void SetFchEnvParams(FCH_INTERFACE *params)
{
	const struct device *dev = pcidev_path_on_root(SATA_DEVFN);
	params->AzaliaController = AzEnable;
	params->SataClass = CONFIG_STONEYRIDGE_SATA_MODE;
	if (dev && dev->enabled) {
		params->SataEnable = is_sata_config();
		params->IdeEnable = !params->SataEnable;
		params->SataIdeMode = (CONFIG_STONEYRIDGE_SATA_MODE ==
					SataLegacyIde);
	} else {
		params->SataEnable = FALSE;
		params->IdeEnable = FALSE;
		params->SataIdeMode = FALSE;
	}
}

void SetFchMidParams(FCH_INTERFACE *params)
{
	SetFchEnvParams(params);
}

/*
 * Table of APIC register index and associated IRQ name. Using IDX_XXX_NAME
 * provides a visible association with the index, therefore helping
 * maintainability of table. If a new index/name is defined in
 * amd_pci_int_defs.h, just add the pair at the end of this table.
 * Order is not important.
 */
static const struct irq_idx_name irq_association[] = {
	{ PIRQ_A,	"INTA#" },
	{ PIRQ_B,	"INTB#" },
	{ PIRQ_C,	"INTC#" },
	{ PIRQ_D,	"INTD#" },
	{ PIRQ_E,	"INTE#" },
	{ PIRQ_F,	"INTF#" },
	{ PIRQ_G,	"INTG#" },
	{ PIRQ_H,	"INTH#" },
	{ PIRQ_MISC,	"Misc" },
	{ PIRQ_MISC0,	"Misc0" },
	{ PIRQ_MISC1,	"Misc1" },
	{ PIRQ_MISC2,	"Misc2" },
	{ PIRQ_SIRQA,	"Ser IRQ INTA" },
	{ PIRQ_SIRQB,	"Ser IRQ INTB" },
	{ PIRQ_SIRQC,	"Ser IRQ INTC" },
	{ PIRQ_SIRQD,	"Ser IRQ INTD" },
	{ PIRQ_SCI,	"SCI" },
	{ PIRQ_SMBUS,	"SMBUS" },
	{ PIRQ_ASF,	"ASF" },
	{ PIRQ_HDA,	"HDA" },
	{ PIRQ_FC,	"FC" },
	{ PIRQ_PMON,	"PerMon" },
	{ PIRQ_SD,	"SD" },
	{ PIRQ_SDIO,	"SDIOt" },
	{ PIRQ_EHCI,	"EHCI" },
	{ PIRQ_XHCI,	"XHCI" },
	{ PIRQ_SATA,	"SATA" },
	{ PIRQ_GPIO,	"GPIO" },
	{ PIRQ_I2C0,	"I2C0" },
	{ PIRQ_I2C1,	"I2C1" },
	{ PIRQ_I2C2,	"I2C2" },
	{ PIRQ_I2C3,	"I2C3" },
	{ PIRQ_UART0,	"UART0" },
	{ PIRQ_UART1,	"UART1" },
};

const struct irq_idx_name *sb_get_apic_reg_association(size_t *size)
{
	*size = ARRAY_SIZE(irq_association);
	return irq_association;
}

static void power_on_aoac_device(int aoac_device_control_register)
{
	uint8_t byte;

	/* Power on the UART and AMBA devices */
	byte = aoac_read8(aoac_device_control_register);
	byte |= FCH_AOAC_PWR_ON_DEV;
	aoac_write8(aoac_device_control_register, byte);
}

static bool is_aoac_device_enabled(int aoac_device_status_register)
{
	uint8_t byte;

	byte = aoac_read8(aoac_device_status_register);
	byte &= (FCH_AOAC_PWR_RST_STATE | FCH_AOAC_RST_CLK_OK_STATE);
	if (byte == (FCH_AOAC_PWR_RST_STATE | FCH_AOAC_RST_CLK_OK_STATE))
		return true;
	else
		return false;
}

void enable_aoac_devices(void)
{
	bool status;
	int i;

	for (i = 0; i < ARRAY_SIZE(aoac_devs); i++)
		power_on_aoac_device(aoac_devs[i].enable);

	/* Wait for AOAC devices to indicate power and clock OK */
	do {
		udelay(100);
		status = true;
		for (i = 0; i < ARRAY_SIZE(aoac_devs); i++)
			status &= is_aoac_device_enabled(aoac_devs[i].status);
	} while (!status);
}

static void sb_enable_lpc(void)
{
	u8 byte;

	/* Enable LPC controller */
	byte = pm_io_read8(PM_LPC_GATING);
	byte |= PM_LPC_ENABLE;
	pm_io_write8(PM_LPC_GATING, byte);
}

static void sb_lpc_decode(void)
{
	u32 tmp = 0;

	/* Enable I/O decode to LPC bus */
	tmp = DECODE_ENABLE_PARALLEL_PORT0 | DECODE_ENABLE_PARALLEL_PORT2
		| DECODE_ENABLE_PARALLEL_PORT4 | DECODE_ENABLE_SERIAL_PORT0
		| DECODE_ENABLE_SERIAL_PORT1 | DECODE_ENABLE_SERIAL_PORT2
		| DECODE_ENABLE_SERIAL_PORT3 | DECODE_ENABLE_SERIAL_PORT4
		| DECODE_ENABLE_SERIAL_PORT5 | DECODE_ENABLE_SERIAL_PORT6
		| DECODE_ENABLE_SERIAL_PORT7 | DECODE_ENABLE_AUDIO_PORT0
		| DECODE_ENABLE_AUDIO_PORT1 | DECODE_ENABLE_AUDIO_PORT2
		| DECODE_ENABLE_AUDIO_PORT3 | DECODE_ENABLE_MSS_PORT2
		| DECODE_ENABLE_MSS_PORT3 | DECODE_ENABLE_FDC_PORT0
		| DECODE_ENABLE_FDC_PORT1 | DECODE_ENABLE_GAME_PORT
		| DECODE_ENABLE_KBC_PORT | DECODE_ENABLE_ACPIUC_PORT
		| DECODE_ENABLE_ADLIB_PORT;

	/* Decode SIOs at 2E/2F and 4E/4F */
	if (CONFIG(STONEYRIDGE_LEGACY_FREE))
		tmp |= DECODE_ALTERNATE_SIO_ENABLE | DECODE_SIO_ENABLE;

	lpc_enable_decode(tmp);
}

static void sb_enable_cf9_io(void)
{
	uint32_t reg = pm_read32(PM_DECODE_EN);

	pm_write32(PM_DECODE_EN, reg | CF9_IO_EN);
}

static void sb_enable_legacy_io(void)
{
	uint32_t reg = pm_read32(PM_DECODE_EN);

	pm_write32(PM_DECODE_EN, reg | LEGACY_IO_EN);
}

void sb_clk_output_48Mhz(u32 osc)
{
	u32 ctrl;

	/*
	 * Clear the disable for OSCOUT1 (signal typically named XnnM_25M_48M)
	 * or OSCOUT2 (USBCLK/25M_48M_OSC).  The frequency defaults to 48MHz.
	 */
	ctrl = misc_read32(MISC_CLK_CNTL1);

	switch (osc) {
	case 1:
		ctrl &= ~OSCOUT1_CLK_OUTPUT_ENB;
		break;
	case 2:
		ctrl &= ~OSCOUT2_CLK_OUTPUT_ENB;
		break;
	default:
		return; /* do nothing if invalid */
	}
	misc_write32(MISC_CLK_CNTL1, ctrl);
}

static void sb_init_spi_base(void)
{
	/* Make sure the base address is predictable */
	if (ENV_X86)
		lpc_set_spibase(SPI_BASE_ADDRESS);
	lpc_enable_spi_rom(SPI_ROM_ENABLE);
}

void sb_set_spi100(u16 norm, u16 fast, u16 alt, u16 tpm)
{
	spi_write16(SPI100_SPEED_CONFIG,
				(norm << SPI_NORM_SPEED_NEW_SH) |
				(fast << SPI_FAST_SPEED_NEW_SH) |
				(alt << SPI_ALT_SPEED_NEW_SH) |
				(tpm << SPI_TPM_SPEED_NEW_SH));
	spi_write16(SPI100_ENABLE, SPI_USE_SPI100);
}

void sb_disable_4dw_burst(void)
{
	spi_write16(SPI100_HOST_PREF_CONFIG,
			spi_read16(SPI100_HOST_PREF_CONFIG) & ~SPI_RD4DW_EN_HOST);
}

void sb_read_mode(u32 mode)
{
	spi_write32(SPI_CNTRL0,
			(spi_read32(SPI_CNTRL0) & ~SPI_READ_MODE_MASK) | mode);
}

static void setup_spread_spectrum(int *reboot)
{
	uint16_t rstcfg = pm_read16(PWR_RESET_CFG);

	rstcfg &= ~TOGGLE_ALL_PWR_GOOD;
	pm_write16(PWR_RESET_CFG, rstcfg);

	uint32_t cntl1 = misc_read32(MISC_CLK_CNTL1);

	if (cntl1 & CG1PLL_FBDIV_TEST) {
		printk(BIOS_DEBUG, "Spread spectrum is ready\n");
		misc_write32(MISC_CGPLL_CONFIG1,
			     misc_read32(MISC_CGPLL_CONFIG1) |
				     CG1PLL_SPREAD_SPECTRUM_ENABLE);

		return;
	}

	printk(BIOS_DEBUG, "Setting up spread spectrum\n");

	uint32_t cfg6 = misc_read32(MISC_CGPLL_CONFIG6);
	cfg6 &= ~CG1PLL_LF_MODE_MASK;
	cfg6 |= (0x0f8 << CG1PLL_LF_MODE_SHIFT) & CG1PLL_LF_MODE_MASK;
	misc_write32(MISC_CGPLL_CONFIG6, cfg6);

	uint32_t cfg3 = misc_read32(MISC_CGPLL_CONFIG3);
	cfg3 &= ~CG1PLL_REFDIV_MASK;
	cfg3 |= (0x003 << CG1PLL_REFDIV_SHIFT) & CG1PLL_REFDIV_MASK;
	cfg3 &= ~CG1PLL_FBDIV_MASK;
	cfg3 |= (0x04b << CG1PLL_FBDIV_SHIFT) & CG1PLL_FBDIV_MASK;
	misc_write32(MISC_CGPLL_CONFIG3, cfg3);

	uint32_t cfg5 = misc_read32(MISC_CGPLL_CONFIG5);
	cfg5 &= ~SS_AMOUNT_NFRAC_SLIP_MASK;
	cfg5 |= (0x2 << SS_AMOUNT_NFRAC_SLIP_SHIFT) & SS_AMOUNT_NFRAC_SLIP_MASK;
	misc_write32(MISC_CGPLL_CONFIG5, cfg5);

	uint32_t cfg4 = misc_read32(MISC_CGPLL_CONFIG4);
	cfg4 &= ~SS_AMOUNT_DSFRAC_MASK;
	cfg4 |= (0xd000 << SS_AMOUNT_DSFRAC_SHIFT) & SS_AMOUNT_DSFRAC_MASK;
	cfg4 &= ~SS_STEP_SIZE_DSFRAC_MASK;
	cfg4 |= (0x02d5 << SS_STEP_SIZE_DSFRAC_SHIFT)
						& SS_STEP_SIZE_DSFRAC_MASK;
	misc_write32(MISC_CGPLL_CONFIG4, cfg4);

	rstcfg |= TOGGLE_ALL_PWR_GOOD;
	pm_write16(PWR_RESET_CFG, rstcfg);

	cntl1 |= CG1PLL_FBDIV_TEST;
	misc_write32(MISC_CLK_CNTL1, cntl1);

	*reboot = 1;
}

static void setup_misc(int *reboot)
{
	/* Undocumented register */
	uint32_t reg = misc_read32(0x50);
	if (!(reg & BIT(16))) {
		reg |= BIT(16);

		misc_write32(0x50, reg);
		*reboot = 1;
	}
}

static void fch_smbus_init(void)
{
	/* 400 kHz smbus speed. */
	const uint8_t smbus_speed = (66000000 / (400000 * 4));

	pm_write8(SMB_ASF_IO_BASE, SMB_BASE_ADDR >> 8);
	smbus_write8(SMBTIMING, smbus_speed);
	/* Clear all SMBUS status bits */
	smbus_write8(SMBHSTSTAT, SMBHST_STAT_CLEAR);
	smbus_write8(SMBSLVSTAT, SMBSLV_STAT_CLEAR);
	asf_write8(SMBHSTSTAT, SMBHST_STAT_CLEAR);
	asf_write8(SMBSLVSTAT, SMBSLV_STAT_CLEAR);
}

/* Before console init */
void bootblock_fch_early_init(void)
{
	int reboot = 0;

	lpc_enable_rom();
	sb_enable_lpc();
	lpc_enable_port80();
	sb_lpc_decode();
	lpc_enable_spi_prefetch();
	sb_init_spi_base();
	sb_disable_4dw_burst(); /* Must be disabled on CZ(ST) */
	enable_acpimmio_decode_pm04();
	fch_smbus_init();
	sb_enable_cf9_io();
	setup_spread_spectrum(&reboot);
	setup_misc(&reboot);

	if (reboot)
		warm_reset();

	sb_enable_legacy_io();
	enable_aoac_devices();
}

static void print_num_status_bits(int num_bits, uint32_t status,
				  const char *const bit_names[])
{
	int i;

	if (!status)
		return;

	for (i = num_bits - 1; i >= 0; i--) {
		if (status & (1 << i)) {
			if (bit_names[i])
				printk(BIOS_DEBUG, "%s ", bit_names[i]);
			else
				printk(BIOS_DEBUG, "BIT%d ", i);
		}
	}
}

static void sb_print_pmxc0_status(void)
{
	/* PMxC0 S5/Reset Status shows the source of previous reset. */
	uint32_t pmxc0_status = pm_read32(PM_RST_STATUS);

	static const char *const pmxc0_status_bits[32] = {
		[0] = "ThermalTrip",
		[1] = "FourSecondPwrBtn",
		[2] = "Shutdown",
		[3] = "ThermalTripFromTemp",
		[4] = "RemotePowerDownFromASF",
		[5] = "ShutDownFan0",
		[16] = "UserRst",
		[17] = "SoftPciRst",
		[18] = "DoInit",
		[19] = "DoReset",
		[20] = "DoFullReset",
		[21] = "SleepReset",
		[22] = "KbReset",
		[23] = "LtReset",
		[24] = "FailBootRst",
		[25] = "WatchdogIssueReset",
		[26] = "RemoteResetFromASF",
		[27] = "SyncFlood",
		[28] = "HangReset",
		[29] = "EcWatchdogRst",
	};

	printk(BIOS_DEBUG, "PMxC0 STATUS: 0x%x ", pmxc0_status);
	print_num_status_bits(ARRAY_SIZE(pmxc0_status_bits), pmxc0_status,
			      pmxc0_status_bits);
	printk(BIOS_DEBUG, "\n");
}

/* After console init */
void bootblock_fch_init(void)
{
	sb_print_pmxc0_status();
}

void sb_enable(struct device *dev)
{
	printk(BIOS_DEBUG, "%s\n", __func__);
}

static void sb_init_acpi_ports(void)
{
	u32 reg;

	/* We use some of these ports in SMM regardless of whether or not
	 * ACPI tables are generated. Enable these ports indiscriminately.
	 */

	pm_write16(PM_EVT_BLK, ACPI_PM_EVT_BLK);
	pm_write16(PM1_CNT_BLK, ACPI_PM1_CNT_BLK);
	pm_write16(PM_TMR_BLK, ACPI_PM_TMR_BLK);
	pm_write16(PM_GPE0_BLK, ACPI_GPE0_BLK);
	/* CpuControl is in \_SB.CP00, 6 bytes */
	pm_write16(PM_CPU_CTRL, ACPI_CPU_CONTROL);

	if (CONFIG(HAVE_SMI_HANDLER)) {
		/* APMC - SMI Command Port */
		pm_write16(PM_ACPI_SMI_CMD, APM_CNT);
		configure_smi(SMITYPE_SMI_CMD_PORT, SMI_MODE_SMI);

		/* SMI on SlpTyp requires sending SMI before completion
		 * response of the I/O write.  The BKDG also specifies
		 * clearing ForceStpClkRetry for SMI trapping.
		 */
		reg = pm_read32(PM_PCI_CTRL);
		reg |= FORCE_SLPSTATE_RETRY;
		reg &= ~FORCE_STPCLK_RETRY;
		pm_write32(PM_PCI_CTRL, reg);

		/* Disable SlpTyp feature */
		reg = pm_read8(PM_RST_CTRL1);
		reg &= ~SLPTYPE_CONTROL_EN;
		pm_write8(PM_RST_CTRL1, reg);

		configure_smi(SMITYPE_SLP_TYP, SMI_MODE_SMI);
	} else {
		pm_write16(PM_ACPI_SMI_CMD, 0);
	}

	/* Decode ACPI registers and enable standard features */
	pm_write8(PM_ACPI_CONF, PM_ACPI_DECODE_STD |
				PM_ACPI_GLOBAL_EN |
				PM_ACPI_RTC_EN_EN |
				PM_ACPI_TIMER_EN_EN);
}

static void set_nvs_sws(void *unused)
{
	struct acpi_pm_gpe_state *state;
	struct global_nvs *gnvs;

	state = cbmem_find(CBMEM_ID_POWER_STATE);
	if (state == NULL)
		return;
	gnvs = acpi_get_gnvs();
	if (gnvs == NULL)
		return;

	acpi_fill_gnvs(gnvs, state);
}

BOOT_STATE_INIT_ENTRY(BS_OS_RESUME, BS_ON_ENTRY, set_nvs_sws, NULL);

void southbridge_init(void *chip_info)
{
	struct acpi_pm_gpe_state *state;

	sb_init_acpi_ports();

	state = cbmem_add(CBMEM_ID_POWER_STATE, sizeof(*state));
	if (state) {
		acpi_fill_pm_gpe_state(state);
		acpi_pm_gpe_add_events_print_events(state);
	}

	acpi_clear_pm_gpe_status();
}

static void set_sb_final_nvs(void)
{
	uintptr_t amdfw_rom;
	uintptr_t xhci_fw;
	uintptr_t fwaddr;
	size_t fwsize;
	const struct device *sd, *sata;

	struct global_nvs *gnvs = acpi_get_gnvs();
	if (gnvs == NULL)
		return;

	gnvs->aoac.ic0e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_I2C0);
	gnvs->aoac.ic1e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_I2C1);
	gnvs->aoac.ic2e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_I2C2);
	gnvs->aoac.ic3e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_I2C3);
	gnvs->aoac.ut0e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_UART0);
	gnvs->aoac.ut1e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_UART1);
	gnvs->aoac.ehce = is_aoac_device_enabled(FCH_AOAC_D3_STATE_USB2);
	gnvs->aoac.xhce = is_aoac_device_enabled(FCH_AOAC_D3_STATE_USB3);
	/* Rely on these being in sync with devicetree */
	sd = pcidev_path_on_root(SD_DEVFN);
	gnvs->aoac.sd_e = sd && sd->enabled ? 1 : 0;
	sata = pcidev_path_on_root(SATA_DEVFN);
	gnvs->aoac.st_e = sata && sata->enabled ? 1 : 0;
	gnvs->aoac.espi = 1;

	amdfw_rom = 0x20000 - (0x80000 << CONFIG_AMD_FWM_POSITION_INDEX);
	xhci_fw = read32((void *)(amdfw_rom + XHCI_FW_SIG_OFFSET));

	fwaddr = 2 + read16((void *)(xhci_fw + XHCI_FW_ADDR_OFFSET
			+ XHCI_FW_BOOTRAM_SIZE));
	fwsize = read16((void *)(xhci_fw + XHCI_FW_SIZE_OFFSET
			+ XHCI_FW_BOOTRAM_SIZE));
	gnvs->fw00 = 0;
	gnvs->fw01 = ((32 * KiB) << 16) + 0;
	gnvs->fw02 = fwaddr + XHCI_FW_BOOTRAM_SIZE;
	gnvs->fw03 = fwsize << 16;

	gnvs->eh10 = pci_read_config32(SOC_EHCI1_DEV, PCI_BASE_ADDRESS_0)
			& ~PCI_BASE_ADDRESS_MEM_ATTR_MASK;
}

void southbridge_final(void *chip_info)
{
	uint8_t restored_power = PM_S5_AT_POWER_RECOVERY;

	if (CONFIG(MAINBOARD_POWER_RESTORE))
		restored_power = PM_RESTORE_S0_IF_PREV_S0;
	pm_write8(PM_RTC_SHADOW, restored_power);

	set_sb_final_nvs();
}

/*
 * Update the PCI devices with a valid IRQ number
 * that is set in the mainboard PCI_IRQ structures.
 */
static void set_pci_irqs(void *unused)
{
	/* Write PCI_INTR regs 0xC00/0xC01 */
	write_pci_int_table();

	/* Write IRQs for all devicetree enabled devices */
	write_pci_cfg_irqs();
}

/*
 * Hook this function into the PCI state machine
 * on entry into BS_DEV_ENABLE.
 */
BOOT_STATE_INIT_ENTRY(BS_DEV_ENABLE, BS_ON_ENTRY, set_pci_irqs, NULL);