/* * This file is part of the coreboot project. * * Copyright (C) 2010-2017 Advanced Micro Devices, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Table of APIC register index and associated IRQ name. Using IDX_XXX_NAME * provides a visible association with the index, therefor helping * maintainability of table. If a new index/name is defined in * amd_pci_int_defs.h, just add the pair at the end of this table. * Order is not important. */ const static struct irq_idx_name irq_association[] = { { PIRQ_A, "INTA#" }, { PIRQ_B, "INTB#" }, { PIRQ_C, "INTC#" }, { PIRQ_D, "INTD#" }, { PIRQ_E, "INTE#" }, { PIRQ_F, "INTF#" }, { PIRQ_G, "INTG#" }, { PIRQ_H, "INTH#" }, { PIRQ_MISC, "Misc" }, { PIRQ_MISC0, "Misc0" }, { PIRQ_MISC1, "Misc1" }, { PIRQ_MISC2, "Misc2" }, { PIRQ_SIRQA, "Ser IRQ INTA" }, { PIRQ_SIRQB, "Ser IRQ INTB" }, { PIRQ_SIRQC, "Ser IRQ INTC" }, { PIRQ_SIRQD, "Ser IRQ INTD" }, { PIRQ_SCI, "SCI" }, { PIRQ_SMBUS, "SMBUS" }, { PIRQ_ASF, "ASF" }, { PIRQ_HDA, "HDA" }, { PIRQ_FC, "FC" }, { PIRQ_PMON, "PerMon" }, { PIRQ_SD, "SD" }, { PIRQ_SDIO, "SDIOt" }, { PIRQ_IMC0, "IMC INT0" }, { PIRQ_IMC1, "IMC INT1" }, { PIRQ_IMC2, "IMC INT2" }, { PIRQ_IMC3, "IMC INT3" }, { PIRQ_IMC4, "IMC INT4" }, { PIRQ_IMC5, "IMC INT5" }, { PIRQ_EHCI, "EHCI" }, { PIRQ_XHCI, "XHCI" }, { PIRQ_SATA, "SATA" }, { PIRQ_GPIO, "GPIO" }, { PIRQ_I2C0, "I2C0" }, { PIRQ_I2C1, "I2C1" }, { PIRQ_I2C2, "I2C2" }, { PIRQ_I2C3, "I2C3" }, { PIRQ_UART0, "UART0" }, { PIRQ_UART1, "UART1" }, }; /* * Structure to simplify code obtaining the total of used wide IO * registers and the size assigned to each. */ static struct wide_io_ioport_and_bits { uint32_t enable; uint16_t port; uint8_t alt; } wio_io_en[TOTAL_WIDEIO_PORTS] = { { LPC_WIDEIO0_ENABLE, LPC_WIDEIO_GENERIC_PORT, LPC_ALT_WIDEIO0_ENABLE }, { LPC_WIDEIO1_ENABLE, LPC_WIDEIO1_GENERIC_PORT, LPC_ALT_WIDEIO1_ENABLE }, { LPC_WIDEIO2_ENABLE, LPC_WIDEIO2_GENERIC_PORT, LPC_ALT_WIDEIO2_ENABLE } }; const struct irq_idx_name *sb_get_apic_reg_association(size_t *size) { *size = ARRAY_SIZE(irq_association); return irq_association; } /** * @brief Find the size of a particular wide IO * * @param index = index of desired wide IO * * @return size of desired wide IO */ uint16_t sb_wideio_size(int index) { uint32_t enable_register; uint16_t size = 0; uint8_t alternate_register; if (index >= TOTAL_WIDEIO_PORTS) return size; enable_register = pci_read_config32(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE); alternate_register = pci_read_config8(SOC_LPC_DEV, LPC_ALT_WIDEIO_RANGE_ENABLE); if (enable_register & wio_io_en[index].enable) size = (alternate_register & wio_io_en[index].alt) ? 16 : 512; return size; } /** * @brief Identify if any LPC wide IO is covering the IO range * * @param start = start of IO range * @param size = size of IO range * * @return Index of wide IO covering the range or error */ int sb_find_wideio_range(uint16_t start, uint16_t size) { uint32_t enable_register; int i, index = WIDEIO_RANGE_ERROR; uint16_t end, current_size, start_wideio, end_wideio; end = start + size; enable_register = pci_read_config32(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE); for (i = 0; i < TOTAL_WIDEIO_PORTS; i++) { current_size = sb_wideio_size(i); if (current_size == 0) continue; start_wideio = pci_read_config16(SOC_LPC_DEV, wio_io_en[i].port); end_wideio = start_wideio + current_size; if ((start >= start_wideio) && (end <= end_wideio)) { index = i; break; } } return index; } /** * @brief Program a LPC wide IO to support an IO range * * @param start = start of range to be routed through wide IO * @param size = size of range to be routed through wide IO * * @return Index of wide IO register used or error */ int sb_set_wideio_range(uint16_t start, uint16_t size) { int i, index = WIDEIO_RANGE_ERROR; uint32_t enable_register; uint8_t alternate_register; enable_register = pci_read_config32(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE); alternate_register = pci_read_config8(SOC_LPC_DEV, LPC_ALT_WIDEIO_RANGE_ENABLE); for (i = 0; i < TOTAL_WIDEIO_PORTS; i++) { if (enable_register & wio_io_en[i].enable) continue; index = i; pci_write_config16(SOC_LPC_DEV, wio_io_en[i].port, start); enable_register |= wio_io_en[i].enable; pci_write_config32(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE, enable_register); if (size <= 16) alternate_register |= wio_io_en[i].alt; else alternate_register &= ~wio_io_en[i].alt; pci_write_config8(SOC_LPC_DEV, LPC_ALT_WIDEIO_RANGE_ENABLE, alternate_register); break; } return index; } void configure_stoneyridge_uart(void) { u8 byte, byte2; if (CONFIG_UART_FOR_CONSOLE < 0 || CONFIG_UART_FOR_CONSOLE > 1) return; /* Power on the UART and AMBA devices */ byte = read8((void *)ACPI_MMIO_BASE + AOAC_BASE + FCH_AOAC_REG56 + CONFIG_UART_FOR_CONSOLE * 2); byte |= AOAC_PWR_ON_DEV; write8((void *)ACPI_MMIO_BASE + AOAC_BASE + FCH_AOAC_REG56 + CONFIG_UART_FOR_CONSOLE * 2, byte); byte = read8((void *)ACPI_MMIO_BASE + AOAC_BASE + FCH_AOAC_REG62); byte |= AOAC_PWR_ON_DEV; write8((void *)ACPI_MMIO_BASE + AOAC_BASE + FCH_AOAC_REG62, byte); /* Set the GPIO mux to UART */ write8((void *)FCH_IOMUXx89_UART0_RTS_L_EGPIO137, 0); write8((void *)FCH_IOMUXx8A_UART0_TXD_EGPIO138, 0); write8((void *)FCH_IOMUXx8E_UART1_RTS_L_EGPIO142, 0); write8((void *)FCH_IOMUXx8F_UART1_TXD_EGPIO143, 0); /* Wait for the UART and AMBA devices to indicate power and clock OK */ do { udelay(100); byte = read8((void *)ACPI_MMIO_BASE + AOAC_BASE + FCH_AOAC_REG57 + CONFIG_UART_FOR_CONSOLE * 2); byte &= (A0AC_PWR_RST_STATE | AOAC_RST_CLK_OK_STATE); byte2 = read8((void *)ACPI_MMIO_BASE + AOAC_BASE + FCH_AOAC_REG63); byte2 &= (A0AC_PWR_RST_STATE | AOAC_RST_CLK_OK_STATE); } while (!((byte == (A0AC_PWR_RST_STATE | AOAC_RST_CLK_OK_STATE)) && (byte2 == (A0AC_PWR_RST_STATE | AOAC_RST_CLK_OK_STATE)))); } void sb_pci_port80(void) { u8 byte; byte = pci_read_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DEC_EN_HIGH); byte &= ~DECODE_IO_PORT_ENABLE4_H; /* disable lpc port 80 */ pci_write_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DEC_EN_HIGH, byte); } void sb_lpc_port80(void) { u8 byte; /* Enable LPC controller */ outb(PM_LPC_GATING, PM_INDEX); byte = inb(PM_DATA); byte |= PM_LPC_ENABLE; outb(PM_LPC_GATING, PM_INDEX); outb(byte, PM_DATA); /* Enable port 80 LPC decode in pci function 3 configuration space. */ byte = pci_read_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DEC_EN_HIGH); byte |= DECODE_IO_PORT_ENABLE4_H; /* enable port 80 */ pci_write_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DEC_EN_HIGH, byte); } void sb_lpc_decode(void) { u32 tmp = 0; /* Enable I/O decode to LPC bus */ tmp = DECODE_ENABLE_PARALLEL_PORT0 | DECODE_ENABLE_PARALLEL_PORT2 | DECODE_ENABLE_PARALLEL_PORT4 | DECODE_ENABLE_SERIAL_PORT0 | DECODE_ENABLE_SERIAL_PORT1 | DECODE_ENABLE_SERIAL_PORT2 | DECODE_ENABLE_SERIAL_PORT3 | DECODE_ENABLE_SERIAL_PORT4 | DECODE_ENABLE_SERIAL_PORT5 | DECODE_ENABLE_SERIAL_PORT6 | DECODE_ENABLE_SERIAL_PORT7 | DECODE_ENABLE_AUDIO_PORT0 | DECODE_ENABLE_AUDIO_PORT1 | DECODE_ENABLE_AUDIO_PORT2 | DECODE_ENABLE_AUDIO_PORT3 | DECODE_ENABLE_MSS_PORT2 | DECODE_ENABLE_MSS_PORT3 | DECODE_ENABLE_FDC_PORT0 | DECODE_ENABLE_FDC_PORT1 | DECODE_ENABLE_GAME_PORT | DECODE_ENABLE_KBC_PORT | DECODE_ENABLE_ACPIUC_PORT | DECODE_ENABLE_ADLIB_PORT; pci_write_config32(SOC_LPC_DEV, LPC_IO_PORT_DECODE_ENABLE, tmp); } void sb_clk_output_48Mhz(void) { u32 ctrl; /* * Enable the X14M_25M_48M_OSC pin and leaving it at it's default so * 48Mhz will be on ball AP13 (FT3b package) */ ctrl = read32((void *)(ACPI_MMIO_BASE + MISC_BASE + FCH_MISC_REG40)); /* clear the OSCOUT1_ClkOutputEnb to enable the 48 Mhz clock */ ctrl &= ~FCH_MISC_REG40_OSCOUT1_EN; write32((void *)(ACPI_MMIO_BASE + MISC_BASE + FCH_MISC_REG40), ctrl); } static uintptr_t sb_spibase(void) { u32 base, enables; /* Make sure the base address is predictable */ base = pci_read_config32(SOC_LPC_DEV, SPIROM_BASE_ADDRESS_REGISTER); enables = base & 0xf; base &= ~0x3f; if (!base) { base = SPI_BASE_ADDRESS; pci_write_config32(SOC_LPC_DEV, SPIROM_BASE_ADDRESS_REGISTER, base | enables | SPI_ROM_ENABLE); /* PCI_COMMAND_MEMORY is read-only and enabled. */ } return (uintptr_t)base; } void sb_set_spi100(u16 norm, u16 fast, u16 alt, u16 tpm) { uintptr_t base = sb_spibase(); write16((void *)base + SPI100_SPEED_CONFIG, (norm << SPI_NORM_SPEED_NEW_SH) | (fast << SPI_FAST_SPEED_NEW_SH) | (alt << SPI_ALT_SPEED_NEW_SH) | (tpm << SPI_TPM_SPEED_NEW_SH)); write16((void *)base + SPI100_ENABLE, SPI_USE_SPI100); } void sb_disable_4dw_burst(void) { uintptr_t base = sb_spibase(); write16((void *)base + SPI100_HOST_PREF_CONFIG, read16((void *)base + SPI100_HOST_PREF_CONFIG) & ~SPI_RD4DW_EN_HOST); } void sb_set_readspeed(u16 norm, u16 fast) { uintptr_t base = sb_spibase(); write16((void *)base + SPI_CNTRL1, (read16((void *)base + SPI_CNTRL1) & ~SPI_CNTRL1_SPEED_MASK) | (norm << SPI_NORM_SPEED_SH) | (fast << SPI_FAST_SPEED_SH)); } void sb_read_mode(u32 mode) { uintptr_t base = sb_spibase(); write32((void *)base + SPI_CNTRL0, (read32((void *)base + SPI_CNTRL0) & ~SPI_READ_MODE_MASK) | mode); } void sb_tpm_decode_spi(void) { u32 spibase = pci_read_config32(SOC_LPC_DEV, SPIROM_BASE_ADDRESS_REGISTER); pci_write_config32(SOC_LPC_DEV, SPIROM_BASE_ADDRESS_REGISTER, spibase | ROUTE_TPM_2_SPI); } /* * Enable 4MB (LPC) ROM access at 0xFFC00000 - 0xFFFFFFFF. * * Hardware should enable LPC ROM by pin straps. This function does not * handle the theoretically possible PCI ROM, FWH, or SPI ROM configurations. * * The southbridge power-on default is to map 512K ROM space. * */ void sb_enable_rom(void) { u8 reg8; /* * Decode variable LPC ROM address ranges 1 and 2. * Bits 3-4 are not defined in any publicly available datasheet */ reg8 = pci_read_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE); reg8 |= (1 << 3) | (1 << 4); pci_write_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE, reg8); /* * LPC ROM address range 1: * Enable LPC ROM range mirroring start at 0x000e(0000). */ pci_write_config16(SOC_LPC_DEV, ROM_ADDRESS_RANGE1_START, 0x000e); /* Enable LPC ROM range mirroring end at 0x000f(ffff). */ pci_write_config16(SOC_LPC_DEV, ROM_ADDRESS_RANGE1_END, 0x000f); /* * LPC ROM address range 2: * * Enable LPC ROM range start at: * 0xfff8(0000): 512KB * 0xfff0(0000): 1MB * 0xffe0(0000): 2MB * 0xffc0(0000): 4MB */ pci_write_config16(SOC_LPC_DEV, ROM_ADDRESS_RANGE2_START, 0x10000 - (CONFIG_COREBOOT_ROMSIZE_KB >> 6)); /* Enable LPC ROM range end at 0xffff(ffff). */ pci_write_config16(SOC_LPC_DEV, ROM_ADDRESS_RANGE2_END, 0xffff); } void bootblock_fch_early_init(void) { sb_enable_rom(); sb_lpc_port80(); sb_lpc_decode(); } int s3_save_nvram_early(u32 dword, int size, int nvram_pos) { int i; printk(BIOS_DEBUG, "Writing %x of size %d to nvram pos: %d\n", dword, size, nvram_pos); for (i = 0; i < size; i++) { outb(nvram_pos, BIOSRAM_INDEX); outb((dword >> (8 * i)) & 0xff, BIOSRAM_DATA); nvram_pos++; } return nvram_pos; } int s3_load_nvram_early(int size, u32 *old_dword, int nvram_pos) { u32 data = *old_dword; int i; for (i = 0; i < size; i++) { outb(nvram_pos, BIOSRAM_INDEX); data &= ~(0xff << (i * 8)); data |= inb(BIOSRAM_DATA) << (i * 8); nvram_pos++; } *old_dword = data; printk(BIOS_DEBUG, "Loading %x of size %d to nvram pos:%d\n", *old_dword, size, nvram_pos-size); return nvram_pos; } int acpi_get_sleep_type(void) { return acpi_sleep_from_pm1(inw(pm_acpi_pm_cnt_blk())); } void sb_enable(device_t dev) { printk(BIOS_DEBUG, "%s\n", __func__); } static void sb_init_acpi_ports(void) { u32 reg; /* We use some of these ports in SMM regardless of whether or not * ACPI tables are generated. Enable these ports indiscriminately. */ pm_write16(PM_EVT_BLK, ACPI_PM_EVT_BLK); pm_write16(PM1_CNT_BLK, ACPI_PM1_CNT_BLK); pm_write16(PM_TMR_BLK, ACPI_PM_TMR_BLK); pm_write16(PM_GPE0_BLK, ACPI_GPE0_BLK); /* CpuControl is in \_PR.CP00, 6 bytes */ pm_write16(PM_CPU_CTRL, ACPI_CPU_CONTROL); if (IS_ENABLED(CONFIG_HAVE_SMI_HANDLER)) { /* APMC - SMI Command Port */ pm_write16(PM_ACPI_SMI_CMD, APM_CNT); configure_smi(SMITYPE_SMI_CMD_PORT, SMI_MODE_SMI); /* SMI on SlpTyp requires sending SMI before completion * response of the I/O write. The BKDG also specifies * clearing ForceStpClkRetry for SMI trapping. */ reg = pm_read32(PM_PCI_CTRL); reg |= FORCE_SLPSTATE_RETRY; reg &= ~FORCE_STPCLK_RETRY; pm_write32(PM_PCI_CTRL, reg); /* Disable SlpTyp feature */ reg = pm_read8(PM_RST_CTRL1); reg &= ~SLPTYPE_CONTROL_EN; pm_write8(PM_RST_CTRL1, reg); configure_smi(SMITYPE_SLP_TYP, SMI_MODE_SMI); } else { pm_write16(PM_ACPI_SMI_CMD, 0); } /* Decode ACPI registers and enable standard features */ pm_write8(PM_ACPI_CONF, PM_ACPI_DECODE_STD | PM_ACPI_GLOBAL_EN | PM_ACPI_RTC_EN_EN | PM_ACPI_TIMER_EN_EN); } void southbridge_init(void *chip_info) { sb_init_acpi_ports(); } void southbridge_final(void *chip_info) { if (IS_ENABLED(CONFIG_STONEYRIDGE_IMC_FWM)) { agesawrapper_fchecfancontrolservice(); if (!IS_ENABLED(CONFIG_ACPI_ENABLE_THERMAL_ZONE)) enable_imc_thermal_zone(); } } /* * Update the PCI devices with a valid IRQ number * that is set in the mainboard PCI_IRQ structures. */ static void set_pci_irqs(void *unused) { /* Write PCI_INTR regs 0xC00/0xC01 */ write_pci_int_table(); /* Write IRQs for all devicetree enabled devices */ write_pci_cfg_irqs(); } /* * Hook this function into the PCI state machine * on entry into BS_DEV_ENABLE. */ BOOT_STATE_INIT_ENTRY(BS_DEV_ENABLE, BS_ON_ENTRY, set_pci_irqs, NULL);