/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * MP and SMM loading initialization. */ void mp_init_cpus(struct bus *cpu_bus) { extern const struct mp_ops amd_mp_ops_with_smm; if (mp_init_with_smm(cpu_bus, &amd_mp_ops_with_smm) != CB_SUCCESS) die_with_post_code(POST_HW_INIT_FAILURE, "mp_init_with_smm failed. Halting.\n"); /* The flash is now no longer cacheable. Reset to WP for performance. */ mtrr_use_temp_range(FLASH_BELOW_4GB_MAPPING_REGION_BASE, FLASH_BELOW_4GB_MAPPING_REGION_SIZE, MTRR_TYPE_WRPROT); set_warm_reset_flag(); } static void model_15_init(struct device *dev) { check_mca(); /* * Per AMD, sync an undocumented MSR with the PSP base address. * Experiments showed that if you write to the MSR after it has * been previously programmed, it causes a general protection fault. * Also, the MSR survives warm reset and S3 cycles, so we need to * test if it was previously written before writing to it. */ msr_t psp_msr; uint32_t psp_bar; /* Note: NDA BKDG names this 32-bit register BAR3 */ psp_bar = pci_read_config32(SOC_PSP_DEV, PCI_BASE_ADDRESS_4); psp_bar &= ~PCI_BASE_ADDRESS_MEM_ATTR_MASK; psp_msr = rdmsr(PSP_ADDR_MSR); if (psp_msr.lo == 0) { psp_msr.lo = psp_bar; wrmsr(PSP_ADDR_MSR, psp_msr); } } static struct device_operations cpu_dev_ops = { .init = model_15_init, }; static struct cpu_device_id cpu_table[] = { { X86_VENDOR_AMD, CPUID_FROM_FMS(0x15, 0x60, 0), CPUID_ALL_STEPPINGS_MASK }, { X86_VENDOR_AMD, CPUID_FROM_FMS(0x15, 0x70, 0), CPUID_ALL_STEPPINGS_MASK }, CPU_TABLE_END }; static const struct cpu_driver model_15 __cpu_driver = { .ops = &cpu_dev_ops, .id_table = cpu_table, }; uint32_t get_pstate_0_reg(void) { return (pci_read_config32(SOC_PM_DEV, CORE_PERF_BOOST_CTRL) >> 2) & 0x7; } static bool all_pstates_have_same_frequency_id(void) { union pstate_msr pstate_reg; size_t i; bool first = true; uint32_t frequency_id; for (i = 0; i < 7; i++) { pstate_reg.raw = rdmsr(PSTATE_MSR(i)).raw; if (!pstate_reg.pstate_en) continue; if (first) { frequency_id = pstate_reg.cpu_fid_0_5; first = false; } else if (frequency_id != pstate_reg.cpu_fid_0_5) { return false; } } return true; } #define CLK_PLL_LOCK_TIMER 0xD82220B8 #define CLK_GATER_SEQUENCE_REGISTER 0xD8222114 uint32_t get_pstate_latency(void) { uint32_t latency = 0; uint32_t smn_data; uint32_t gaters_on_time, gaters_off_time; smn_data = smn_read32(CLK_GATER_SEQUENCE_REGISTER); gaters_on_time = (smn_data & 0xff) * 10; gaters_off_time = (smn_data >> 8 & 0xff) * 10; latency += DIV_ROUND_UP(15 * gaters_on_time, 1000); latency += DIV_ROUND_UP(15 * gaters_off_time, 1000); if (!all_pstates_have_same_frequency_id()) { smn_data = smn_read32(CLK_PLL_LOCK_TIMER); latency += DIV_ROUND_UP(smn_data & 0x1fff, 100); } return latency; }