/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct amd_fsp_acpi_hob_info { uint32_t table_size_in_bytes; uint8_t total_hobs_for_table; uint8_t sequence_number; uint16_t reserved; uint16_t hob_payload[0xffc8]; } __packed; static uintptr_t add_agesa_acpi_table(guid_t guid, const char *name, acpi_rsdp_t *rsdp, uintptr_t current) { const struct amd_fsp_acpi_hob_info *data; void *table = (void *)current; size_t hob_size; data = fsp_find_extension_hob_by_guid(guid.b, &hob_size); if (!data) { printk(BIOS_ERR, "AGESA %s ACPI table was not found.\n", name); return current; } printk(BIOS_INFO, "ACPI: * %s (AGESA).\n", name); memcpy(table, data->hob_payload, data->table_size_in_bytes); current += data->table_size_in_bytes; acpi_add_table(rsdp, table); current = acpi_align_current(current); return current; } unsigned long acpi_fill_ivrs_ioapic(acpi_ivrs_t *ivrs, unsigned long current) { ivrs_ivhd_special_t *ivhd_ioapic = (ivrs_ivhd_special_t *)current; memset(ivhd_ioapic, 0, sizeof(*ivhd_ioapic)); ivhd_ioapic->type = IVHD_DEV_8_BYTE_EXT_SPECIAL_DEV; ivhd_ioapic->dte_setting = IVHD_DTE_LINT_1_PASS | IVHD_DTE_LINT_0_PASS | IVHD_DTE_SYS_MGT_NO_TRANS | IVHD_DTE_NMI_PASS | IVHD_DTE_EXT_INT_PASS | IVHD_DTE_INIT_PASS; ivhd_ioapic->handle = CONFIG_PICASSO_FCH_IOAPIC_ID; ivhd_ioapic->source_dev_id = PCI_DEVFN(SMBUS_DEV, SMBUS_FUNC); ivhd_ioapic->variety = IVHD_SPECIAL_DEV_IOAPIC; current += sizeof(ivrs_ivhd_special_t); ivhd_ioapic = (ivrs_ivhd_special_t *)current; memset(ivhd_ioapic, 0, sizeof(*ivhd_ioapic)); ivhd_ioapic->type = IVHD_DEV_8_BYTE_EXT_SPECIAL_DEV; ivhd_ioapic->handle = CONFIG_PICASSO_GNB_IOAPIC_ID; ivhd_ioapic->source_dev_id = PCI_DEVFN(0, 1); ivhd_ioapic->variety = IVHD_SPECIAL_DEV_IOAPIC; current += sizeof(ivrs_ivhd_special_t); return current; } static unsigned long ivhd_describe_hpet(unsigned long current) { ivrs_ivhd_special_t *ivhd_hpet = (ivrs_ivhd_special_t *)current; ivhd_hpet->type = IVHD_DEV_8_BYTE_EXT_SPECIAL_DEV; ivhd_hpet->reserved = 0x0000; ivhd_hpet->dte_setting = 0x00; ivhd_hpet->handle = 0x00; ivhd_hpet->source_dev_id = PCI_DEVFN(SMBUS_DEV, SMBUS_FUNC); ivhd_hpet->variety = IVHD_SPECIAL_DEV_HPET; current += sizeof(ivrs_ivhd_special_t); return current; } static unsigned long ivhd_describe_f0_device(unsigned long current, uint16_t dev_id, uint8_t datasetting) { ivrs_ivhd_f0_entry_t *ivhd_f0 = (ivrs_ivhd_f0_entry_t *) current; ivhd_f0->type = IVHD_DEV_VARIABLE; ivhd_f0->dev_id = dev_id; ivhd_f0->dte_setting = datasetting; ivhd_f0->hardware_id[0] = 'A'; ivhd_f0->hardware_id[1] = 'M'; ivhd_f0->hardware_id[2] = 'D'; ivhd_f0->hardware_id[3] = 'I'; ivhd_f0->hardware_id[4] = '0'; ivhd_f0->hardware_id[5] = '0'; ivhd_f0->hardware_id[6] = '4'; ivhd_f0->hardware_id[7] = '0'; memset(ivhd_f0->compatible_id, 0, sizeof(ivhd_f0->compatible_id)); ivhd_f0->uuid_format = 0; ivhd_f0->uuid_length = 0; current += sizeof(ivrs_ivhd_f0_entry_t); return current; } static unsigned long ivhd_dev_range(unsigned long current, uint16_t start_devid, uint16_t end_devid, uint8_t setting) { /* 4-byte IVHD structures must be aligned to the 4-byte boundary. */ current = ALIGN_UP(current, 4); ivrs_ivhd_generic_t *ivhd_range = (ivrs_ivhd_generic_t *)current; /* Create the start range IVHD entry */ ivhd_range->type = IVHD_DEV_4_BYTE_START_RANGE; ivhd_range->dev_id = start_devid; ivhd_range->dte_setting = setting; current += sizeof(ivrs_ivhd_generic_t); /* Create the end range IVHD entry */ ivhd_range = (ivrs_ivhd_generic_t *)current; ivhd_range->type = IVHD_DEV_4_BYTE_END_RANGE; ivhd_range->dev_id = end_devid; ivhd_range->dte_setting = setting; current += sizeof(ivrs_ivhd_generic_t); return current; } static unsigned long add_ivhd_dev_entry(struct device *parent, struct device *dev, unsigned long *current, uint8_t type, uint8_t data) { if (type == IVHD_DEV_4_BYTE_SELECT) { /* 4-byte IVHD structures must be aligned to the 4-byte boundary. */ *current = ALIGN_UP(*current, 4); ivrs_ivhd_generic_t *ivhd_entry = (ivrs_ivhd_generic_t *)*current; ivhd_entry->type = type; ivhd_entry->dev_id = dev->path.pci.devfn | (dev->bus->secondary << 8); ivhd_entry->dte_setting = data; *current += sizeof(ivrs_ivhd_generic_t); } else if (type == IVHD_DEV_8_BYTE_ALIAS_SELECT) { ivrs_ivhd_alias_t *ivhd_entry = (ivrs_ivhd_alias_t *)*current; ivhd_entry->type = type; ivhd_entry->dev_id = dev->path.pci.devfn | (dev->bus->secondary << 8); ivhd_entry->dte_setting = data; ivhd_entry->reserved1 = 0; ivhd_entry->reserved2 = 0; ivhd_entry->source_dev_id = parent->path.pci.devfn | (parent->bus->secondary << 8); *current += sizeof(ivrs_ivhd_alias_t); } return *current; } static void ivrs_add_device_or_bridge(struct device *parent, struct device *dev, unsigned long *current, uint16_t *ivhd_length) { unsigned int header_type, is_pcie; unsigned long current_backup; header_type = dev->hdr_type & 0x7f; is_pcie = pci_find_capability(dev, PCI_CAP_ID_PCIE); if (((header_type == PCI_HEADER_TYPE_NORMAL) || (header_type == PCI_HEADER_TYPE_BRIDGE)) && is_pcie) { /* Device or Bridge is PCIe */ current_backup = *current; add_ivhd_dev_entry(parent, dev, current, IVHD_DEV_4_BYTE_SELECT, 0x0); *ivhd_length += (*current - current_backup); } else if ((header_type == PCI_HEADER_TYPE_NORMAL) && !is_pcie) { /* Device is legacy PCI or PCI-X */ current_backup = *current; add_ivhd_dev_entry(parent, dev, current, IVHD_DEV_8_BYTE_ALIAS_SELECT, 0x0); *ivhd_length += (*current - current_backup); } } static void add_ivhd_device_entries(struct device *parent, struct device *dev, unsigned int depth, int linknum, int8_t *root_level, unsigned long *current, uint16_t *ivhd_length) { struct device *sibling; struct bus *link; if (!root_level) return; if (dev->path.type == DEVICE_PATH_PCI) { if ((dev->bus->secondary == 0x0) && (dev->path.pci.devfn == 0x0)) *root_level = depth; if ((*root_level != -1) && (dev->enabled)) { if (depth != *root_level) ivrs_add_device_or_bridge(parent, dev, current, ivhd_length); } } for (link = dev->link_list; link; link = link->next) for (sibling = link->children; sibling; sibling = sibling->sibling) add_ivhd_device_entries(dev, sibling, depth + 1, depth, root_level, current, ivhd_length); } static unsigned long acpi_fill_ivrs40(unsigned long current, acpi_ivrs_t *ivrs) { acpi_ivrs_ivhd40_t *ivhd_40; unsigned long current_backup; int8_t root_level; /* * These devices should be already found by previous function. * Do not perform NULL checks. */ struct device *nb_dev = pcidev_on_root(0, 0); struct device *iommu_dev = pcidev_on_root(0, 2); memset((void *)current, 0, sizeof(acpi_ivrs_ivhd40_t)); ivhd_40 = (acpi_ivrs_ivhd40_t *)current; /* Enable EFR */ ivhd_40->type = IVHD_BLOCK_TYPE_FULL__ACPI_HID; /* For type 40h bits 6 and 7 are reserved */ ivhd_40->flags = ivrs->ivhd.flags & 0x3f; ivhd_40->length = sizeof(struct acpi_ivrs_ivhd_40); /* BDF :00.2 */ ivhd_40->device_id = 0x02 | (nb_dev->bus->secondary << 8); ivhd_40->capability_offset = pci_find_capability(iommu_dev, IOMMU_CAP_ID); ivhd_40->iommu_base_low = ivrs->ivhd.iommu_base_low; ivhd_40->iommu_base_high = ivrs->ivhd.iommu_base_high; ivhd_40->pci_segment_group = 0x0000; ivhd_40->iommu_info = ivrs->ivhd.iommu_info; /* For type 40h bits 31:28 and 12:0 are reserved */ ivhd_40->iommu_attributes = ivrs->ivhd.iommu_feature_info & 0xfffe000; if (pci_read_config32(iommu_dev, ivhd_40->capability_offset) & EFR_FEATURE_SUP) { ivhd_40->efr_reg_image_low = read32((void *)ivhd_40->iommu_base_low + 0x30); ivhd_40->efr_reg_image_high = read32((void *)ivhd_40->iommu_base_low + 0x34); } current += sizeof(acpi_ivrs_ivhd40_t); /* Now repeat all the device entries from type 10h */ current_backup = current; current = ivhd_dev_range(current, PCI_DEVFN(1, 0), PCI_DEVFN(0x1f, 6), 0); ivhd_40->length += (current - current_backup); root_level = -1; add_ivhd_device_entries(NULL, all_devices, 0, -1, &root_level, ¤t, &ivhd_40->length); /* Describe HPET */ current_backup = current; current = ivhd_describe_hpet(current); ivhd_40->length += (current - current_backup); /* Describe IOAPICs */ current_backup = current; current = acpi_fill_ivrs_ioapic(ivrs, current); ivhd_40->length += (current - current_backup); /* Describe EMMC */ current_backup = current; current = ivhd_describe_f0_device(current, PCI_DEVFN(0x13, 1), IVHD_DTE_LINT_1_PASS | IVHD_DTE_LINT_0_PASS | IVHD_DTE_SYS_MGT_TRANS | IVHD_DTE_NMI_PASS | IVHD_DTE_EXT_INT_PASS | IVHD_DTE_INIT_PASS); ivhd_40->length += (current - current_backup); return current; } static unsigned long acpi_fill_ivrs11(unsigned long current, acpi_ivrs_t *ivrs) { acpi_ivrs_ivhd11_t *ivhd_11; ivhd11_iommu_attr_t *ivhd11_attr_ptr; unsigned long current_backup; int8_t root_level; /* * These devices should be already found by previous function. * Do not perform NULL checks. */ struct device *nb_dev = pcidev_on_root(0, 0); struct device *iommu_dev = pcidev_on_root(0, 2); /* * In order to utilize all features, firmware should expose type 11h * IVHD which supersedes the type 10h. */ memset((void *)current, 0, sizeof(acpi_ivrs_ivhd11_t)); ivhd_11 = (acpi_ivrs_ivhd11_t *)current; /* Enable EFR */ ivhd_11->type = IVHD_BLOCK_TYPE_FULL__FIXED; /* For type 11h bits 6 and 7 are reserved */ ivhd_11->flags = ivrs->ivhd.flags & 0x3f; ivhd_11->length = sizeof(struct acpi_ivrs_ivhd_11); /* BDF :00.2 */ ivhd_11->device_id = 0x02 | (nb_dev->bus->secondary << 8); ivhd_11->capability_offset = pci_find_capability(iommu_dev, IOMMU_CAP_ID); ivhd_11->iommu_base_low = ivrs->ivhd.iommu_base_low; ivhd_11->iommu_base_high = ivrs->ivhd.iommu_base_high; ivhd_11->pci_segment_group = 0x0000; ivhd_11->iommu_info = ivrs->ivhd.iommu_info; ivhd11_attr_ptr = (ivhd11_iommu_attr_t *) &ivrs->ivhd.iommu_feature_info; ivhd_11->iommu_attributes.perf_counters = ivhd11_attr_ptr->perf_counters; ivhd_11->iommu_attributes.perf_counter_banks = ivhd11_attr_ptr->perf_counter_banks; ivhd_11->iommu_attributes.msi_num_ppr = ivhd11_attr_ptr->msi_num_ppr; if (pci_read_config32(iommu_dev, ivhd_11->capability_offset) & EFR_FEATURE_SUP) { ivhd_11->efr_reg_image_low = read32((void *)ivhd_11->iommu_base_low + 0x30); ivhd_11->efr_reg_image_high = read32((void *)ivhd_11->iommu_base_low + 0x34); } current += sizeof(acpi_ivrs_ivhd11_t); /* Now repeat all the device entries from type 10h */ current_backup = current; current = ivhd_dev_range(current, PCI_DEVFN(1, 0), PCI_DEVFN(0x1f, 6), 0); ivhd_11->length += (current - current_backup); root_level = -1; add_ivhd_device_entries(NULL, all_devices, 0, -1, &root_level, ¤t, &ivhd_11->length); /* Describe HPET */ current_backup = current; current = ivhd_describe_hpet(current); ivhd_11->length += (current - current_backup); /* Describe IOAPICs */ current_backup = current; current = acpi_fill_ivrs_ioapic(ivrs, current); ivhd_11->length += (current - current_backup); return acpi_fill_ivrs40(current, ivrs); } static unsigned long acpi_fill_ivrs(acpi_ivrs_t *ivrs, unsigned long current) { unsigned long current_backup; uint64_t mmio_x30_value; uint64_t mmio_x18_value; uint64_t mmio_x4000_value; uint32_t cap_offset_0; uint32_t cap_offset_10; int8_t root_level; struct device *iommu_dev; struct device *nb_dev; nb_dev = pcidev_on_root(0, 0); if (!nb_dev) { printk(BIOS_WARNING, "%s: Northbridge device not present!\n", __func__); printk(BIOS_WARNING, "%s: IVRS table not generated...\n", __func__); return (unsigned long)ivrs; } iommu_dev = pcidev_on_root(0, 2); if (!iommu_dev) { printk(BIOS_WARNING, "%s: IOMMU device not found\n", __func__); return (unsigned long)ivrs; } if (ivrs != NULL) { ivrs->ivhd.type = IVHD_BLOCK_TYPE_LEGACY__FIXED; ivrs->ivhd.length = sizeof(struct acpi_ivrs_ivhd); /* BDF :00.2 */ ivrs->ivhd.device_id = 0x02 | (nb_dev->bus->secondary << 8); ivrs->ivhd.capability_offset = pci_find_capability(iommu_dev, IOMMU_CAP_ID); ivrs->ivhd.iommu_base_low = pci_read_config32(iommu_dev, 0x44) & 0xffffc000; ivrs->ivhd.iommu_base_high = pci_read_config32(iommu_dev, 0x48); cap_offset_0 = pci_read_config32(iommu_dev, ivrs->ivhd.capability_offset); cap_offset_10 = pci_read_config32(iommu_dev, ivrs->ivhd.capability_offset + 0x10); mmio_x18_value = read64((void *)ivrs->ivhd.iommu_base_low + 0x18); mmio_x30_value = read64((void *)ivrs->ivhd.iommu_base_low + 0x30); mmio_x4000_value = read64((void *)ivrs->ivhd.iommu_base_low + 0x4000); ivrs->ivhd.flags |= ((mmio_x30_value & MMIO_EXT_FEATURE_PPR_SUP) ? IVHD_FLAG_PPE_SUP : 0); ivrs->ivhd.flags |= ((mmio_x30_value & MMIO_EXT_FEATURE_PRE_F_SUP) ? IVHD_FLAG_PREF_SUP : 0); ivrs->ivhd.flags |= ((mmio_x18_value & MMIO_CTRL_COHERENT) ? IVHD_FLAG_COHERENT : 0); ivrs->ivhd.flags |= ((cap_offset_0 & CAP_OFFSET_0_IOTLB_SP) ? IVHD_FLAG_IOTLB_SUP : 0); ivrs->ivhd.flags |= ((mmio_x18_value & MMIO_CTRL_ISOC) ? IVHD_FLAG_ISOC : 0); ivrs->ivhd.flags |= ((mmio_x18_value & MMIO_CTRL_RES_PASS_PW) ? IVHD_FLAG_RES_PASS_PW : 0); ivrs->ivhd.flags |= ((mmio_x18_value & MMIO_CTRL_PASS_PW) ? IVHD_FLAG_PASS_PW : 0); ivrs->ivhd.flags |= ((mmio_x18_value & MMIO_CTRL_HT_TUN_EN) ? IVHD_FLAG_HT_TUN_EN : 0); ivrs->ivhd.pci_segment_group = 0x0000; ivrs->ivhd.iommu_info = pci_read_config16(iommu_dev, ivrs->ivhd.capability_offset + 0x10) & 0x1F; ivrs->ivhd.iommu_info |= (pci_read_config16(iommu_dev, ivrs->ivhd.capability_offset + 0xC) & 0x1F) << IOMMU_INFO_UNIT_ID_SHIFT; ivrs->ivhd.iommu_feature_info = 0; ivrs->ivhd.iommu_feature_info |= (mmio_x30_value & MMIO_EXT_FEATURE_HATS_MASK) << (IOMMU_FEATURE_HATS_SHIFT - MMIO_EXT_FEATURE_HATS_SHIFT); ivrs->ivhd.iommu_feature_info |= (mmio_x30_value & MMIO_EXT_FEATURE_GATS_MASK) << (IOMMU_FEATURE_GATS_SHIFT - MMIO_EXT_FEATURE_GATS_SHIFT); ivrs->ivhd.iommu_feature_info |= (cap_offset_10 & CAP_OFFSET_10_MSI_NUM_PPR) >> (CAP_OFFSET_10_MSI_NUM_PPR_SHIFT - IOMMU_FEATURE_MSI_NUM_PPR_SHIFT); ivrs->ivhd.iommu_feature_info |= (mmio_x4000_value & MMIO_CNT_CFG_N_COUNTER_BANKS) << (IOMMU_FEATURE_PN_BANKS_SHIFT - MMIO_CNT_CFG_N_CNT_BANKS_SHIFT); ivrs->ivhd.iommu_feature_info |= (mmio_x4000_value & MMIO_CNT_CFG_N_COUNTER) << (IOMMU_FEATURE_PN_COUNTERS_SHIFT - MMIO_CNT_CFG_N_COUNTER_SHIFT); ivrs->ivhd.iommu_feature_info |= (mmio_x30_value & MMIO_EXT_FEATURE_PAS_MAX_MASK) >> (MMIO_EXT_FEATURE_PAS_MAX_SHIFT - IOMMU_FEATURE_PA_SMAX_SHIFT); ivrs->ivhd.iommu_feature_info |= ((mmio_x30_value & MMIO_EXT_FEATURE_HE_SUP) ? IOMMU_FEATURE_HE_SUP : 0); ivrs->ivhd.iommu_feature_info |= ((mmio_x30_value & MMIO_EXT_FEATURE_GA_SUP) ? IOMMU_FEATURE_GA_SUP : 0); ivrs->ivhd.iommu_feature_info |= ((mmio_x30_value & MMIO_EXT_FEATURE_IA_SUP) ? IOMMU_FEATURE_IA_SUP : 0); ivrs->ivhd.iommu_feature_info |= (mmio_x30_value & MMIO_EXT_FEATURE_GLX_SUP_MASK) >> (MMIO_EXT_FEATURE_GLX_SHIFT - IOMMU_FEATURE_GLX_SHIFT); ivrs->ivhd.iommu_feature_info |= ((mmio_x30_value & MMIO_EXT_FEATURE_GT_SUP) ? IOMMU_FEATURE_GT_SUP : 0); ivrs->ivhd.iommu_feature_info |= ((mmio_x30_value & MMIO_EXT_FEATURE_NX_SUP) ? IOMMU_FEATURE_NX_SUP : 0); ivrs->ivhd.iommu_feature_info |= ((mmio_x30_value & MMIO_EXT_FEATURE_XT_SUP) ? IOMMU_FEATURE_XT_SUP : 0); /* Enable EFR if supported */ ivrs->iv_info = pci_read_config32(iommu_dev, ivrs->ivhd.capability_offset + 0x10) & 0x007fffe0; if (pci_read_config32(iommu_dev, ivrs->ivhd.capability_offset) & EFR_FEATURE_SUP) ivrs->iv_info |= IVINFO_EFR_SUPPORTED; } else { printk(BIOS_WARNING, "%s: AGESA returned NULL IVRS\n", __func__); return (unsigned long)ivrs; } /* * Add all possible PCI devices on bus 0 that can generate transactions * processed by IOMMU. Start with device 00:01.0 */ current_backup = current; current = ivhd_dev_range(current, PCI_DEVFN(1, 0), PCI_DEVFN(0x1f, 6), 0); ivrs->ivhd.length += (current - current_backup); root_level = -1; add_ivhd_device_entries(NULL, all_devices, 0, -1, &root_level, ¤t, &ivrs->ivhd.length); /* Describe HPET */ current_backup = current; current = ivhd_describe_hpet(current); ivrs->ivhd.length += (current - current_backup); /* Describe IOAPICs */ current_backup = current; current = acpi_fill_ivrs_ioapic(ivrs, current); ivrs->ivhd.length += (current - current_backup); /* If EFR is not supported, IVHD type 11h is reserved */ if (!(ivrs->iv_info & IVINFO_EFR_SUPPORTED)) return current; return acpi_fill_ivrs11(current, ivrs); } static unsigned long gen_crat_hsa_entry(struct acpi_crat_header *crat, unsigned long current) { struct crat_hsa_processing_unit *hsa_entry = (struct crat_hsa_processing_unit *)current; memset(hsa_entry, 0, sizeof(struct crat_hsa_processing_unit)); hsa_entry->flags = CRAT_HSA_PR_FLAG_EN | CRAT_HSA_PR_FLAG_CPU_PRES; hsa_entry->wave_front_size = 4; hsa_entry->num_cpu_cores = get_cpu_count(); hsa_entry->length = sizeof(struct crat_hsa_processing_unit); crat->total_entries++; current += hsa_entry->length; return current; } static unsigned long create_crat_memory_entry(uint32_t domain, uint64_t region_base, uint64_t region_size, unsigned long current) { struct crat_memory *mem_affinity = (struct crat_memory *)current; memset(mem_affinity, 0, sizeof(struct crat_memory)); mem_affinity->type = CRAT_MEMORY_TYPE; mem_affinity->length = sizeof(struct crat_memory); mem_affinity->proximity_domain = 0; mem_affinity->base_address_low = region_base & 0xffffffff; mem_affinity->base_address_high = (region_base >> 32) & 0xffffffff; mem_affinity->length_low = region_size & 0xffffffff; mem_affinity->length_high = (region_size >> 32) & 0xffffffff; mem_affinity->flags = CRAT_MEM_FLAG_EN; mem_affinity->width = 64; current += mem_affinity->length; return current; } static unsigned long gen_crat_memory_entries(struct acpi_crat_header *crat, unsigned long current) { uint32_t dram_base_reg, dram_limit_reg, dram_hole_ctl; uint64_t memory_length, memory_base, hole_base, size_below_hole; size_t new_entries = 0; for (size_t dram_map_idx = 0; dram_map_idx < PICASSO_NUM_DRAM_REG; dram_map_idx++) { dram_base_reg = data_fabric_read32(0, DF_DRAM_BASE(dram_map_idx), IOMS0_FABRIC_ID); if (dram_base_reg & DRAM_BASE_REG_VALID) { dram_limit_reg = data_fabric_read32(0, DF_DRAM_LIMIT(dram_map_idx), IOMS0_FABRIC_ID); memory_length = ((dram_limit_reg & DRAM_LIMIT_ADDR) >> DRAM_LIMIT_ADDR_SHFT) + 1 - ((dram_base_reg & DRAM_BASE_ADDR) >> DRAM_BASE_ADDR_SHFT); memory_length = memory_length << 28; memory_base = (dram_base_reg & DRAM_BASE_ADDR) << (28 - DRAM_BASE_ADDR_SHFT); if (memory_base == 0) { current = create_crat_memory_entry(0, 0ull, 0xa0000ull, current); memory_base = (1 * 1024 * 1024); memory_length = memory_base; new_entries++; } if (dram_base_reg & DRAM_BASE_HOLE_EN) { dram_hole_ctl = data_fabric_read32(0, D18F0_DRAM_HOLE_CTL, IOMS0_FABRIC_ID); hole_base = (dram_hole_ctl & DRAM_HOLE_CTL_BASE); size_below_hole = hole_base - memory_base; current = create_crat_memory_entry(0, memory_base, size_below_hole, current); memory_length = (((dram_limit_reg & DRAM_LIMIT_ADDR) >> DRAM_LIMIT_ADDR_SHFT) + 1 - 0x10) << 28; memory_base = 0x100000000; new_entries++; } current = create_crat_memory_entry(0, memory_base, memory_length, current); new_entries++; } } crat->total_entries += new_entries; return current; } static unsigned long add_crat_cache_entry(struct crat_cache **cache_affinity, unsigned long current) { *cache_affinity = (struct crat_cache *)current; memset(*cache_affinity, 0, sizeof(struct crat_cache)); (*cache_affinity)->type = CRAT_CACHE_TYPE; (*cache_affinity)->length = sizeof(struct crat_cache); (*cache_affinity)->flags = CRAT_CACHE_FLAG_EN | CRAT_CACHE_FLAG_CPU_CACHE; current += sizeof(struct crat_cache); return current; } static uint8_t get_associativity(uint32_t encoded_associativity) { uint8_t associativity = 0; switch (encoded_associativity) { case 0: case 1: case 2: case 3: case 4: return encoded_associativity; case 5: associativity = 6; break; case 6: associativity = 8; break; case 8: associativity = 16; break; case 0xA: associativity = 32; break; case 0xB: associativity = 48; break; case 0xC: associativity = 64; break; case 0xD: associativity = 96; break; case 0xE: associativity = 128; break; case 0xF: associativity = 0xFF; break; default: return 0; } return associativity; } static unsigned long gen_crat_cache_entry(struct acpi_crat_header *crat, unsigned long current) { size_t total_num_threads, num_threads_sharing0, num_threads_sharing1, num_threads_sharing2, num_threads_sharing3, thread, new_entries; struct cpuid_result cache_props0, cache_props1, cache_props2, cache_props3; uint8_t sibling_mask = 0; uint32_t l1_data_cache_ids, l1_inst_cache_ids, l2_cache_ids, l3_cache_ids; struct crat_cache *cache_affinity = NULL; total_num_threads = get_cpu_count(); cache_props0 = cpuid_ext(CPUID_CACHE_PROPS, CACHE_PROPS_0); cache_props1 = cpuid_ext(CPUID_CACHE_PROPS, CACHE_PROPS_1); cache_props2 = cpuid_ext(CPUID_CACHE_PROPS, CACHE_PROPS_2); cache_props3 = cpuid_ext(CPUID_CACHE_PROPS, CACHE_PROPS_3); l1_data_cache_ids = cpuid_ecx(CPUID_L1_TLB_CACHE_IDS); l1_inst_cache_ids = cpuid_edx(CPUID_L1_TLB_CACHE_IDS); l2_cache_ids = cpuid_ecx(CPUID_L2_L3_CACHE_L2_TLB_IDS); l3_cache_ids = cpuid_edx(CPUID_L2_L3_CACHE_L2_TLB_IDS); num_threads_sharing0 = ((cache_props0.eax & NUM_SHARE_CACHE_MASK) >> NUM_SHARE_CACHE_SHFT) + 1; num_threads_sharing1 = ((cache_props1.eax & NUM_SHARE_CACHE_MASK) >> NUM_SHARE_CACHE_SHFT) + 1; num_threads_sharing2 = ((cache_props2.eax & NUM_SHARE_CACHE_MASK) >> NUM_SHARE_CACHE_SHFT) + 1; num_threads_sharing3 = ((cache_props3.eax & NUM_SHARE_CACHE_MASK) >> NUM_SHARE_CACHE_SHFT) + 1; new_entries = 0; for (thread = 0; thread < total_num_threads; thread++) { /* L1 data cache */ if (thread % num_threads_sharing0 == 0) { current = add_crat_cache_entry(&cache_affinity, current); new_entries++; cache_affinity->flags |= CRAT_CACHE_FLAG_DATA_CACHE; cache_affinity->proc_id_low = thread; sibling_mask = 1; for (size_t sibling = 1; sibling < num_threads_sharing0; sibling++) sibling_mask = (sibling_mask << 1) + 1; cache_affinity->sibling_map[thread / 8] = sibling_mask << (thread % 8); cache_affinity->cache_properties = (cache_props0.edx & CACHE_INCLUSIVE_MASK) ? 2 : 0; cache_affinity->cache_size = (l1_data_cache_ids & L1_DC_SIZE_MASK) >> L1_DC_SIZE_SHFT; cache_affinity->cache_level = CRAT_L1_CACHE; cache_affinity->lines_per_tag = (l1_data_cache_ids & L1_DC_LINE_TAG_MASK) >> L1_DC_LINE_TAG_SHFT; cache_affinity->cache_line_size = (l1_data_cache_ids & L1_DC_LINE_SIZE_MASK) >> L1_DC_LINE_SIZE_SHFT; cache_affinity->associativity = (l1_data_cache_ids & L1_DC_ASSOC_MASK) >> L1_DC_ASSOC_SHFT; cache_affinity->cache_latency = 1; } /* L1 instruction cache */ if (thread % num_threads_sharing1 == 0) { current = add_crat_cache_entry(&cache_affinity, current); new_entries++; cache_affinity->flags |= CRAT_CACHE_FLAG_INSTR_CACHE; cache_affinity->proc_id_low = thread; sibling_mask = 1; for (size_t sibling = 1; sibling < num_threads_sharing1; sibling++) sibling_mask = (sibling_mask << 1) + 1; cache_affinity->sibling_map[thread / 8] = sibling_mask << (thread % 8); cache_affinity->cache_properties = (cache_props1.edx & CACHE_INCLUSIVE_MASK) ? 2 : 0; cache_affinity->cache_size = (l1_inst_cache_ids & L1_IC_SIZE_MASK) >> L1_IC_SIZE_SHFT; cache_affinity->cache_level = CRAT_L1_CACHE; cache_affinity->lines_per_tag = (l1_inst_cache_ids & L1_IC_LINE_TAG_MASK) >> L1_IC_LINE_TAG_SHFT; cache_affinity->cache_line_size = (l1_inst_cache_ids & L1_IC_LINE_SIZE_MASK) >> L1_IC_LINE_SIZE_SHFT; cache_affinity->associativity = (l1_inst_cache_ids & L1_IC_ASSOC_MASK) >> L1_IC_ASSOC_SHFT; cache_affinity->cache_latency = 1; } /* L2 cache */ if (thread % num_threads_sharing2 == 0) { current = add_crat_cache_entry(&cache_affinity, current); new_entries++; cache_affinity->flags |= CRAT_CACHE_FLAG_DATA_CACHE | CRAT_CACHE_FLAG_INSTR_CACHE; cache_affinity->proc_id_low = thread; sibling_mask = 1; for (size_t sibling = 1; sibling < num_threads_sharing2; sibling++) sibling_mask = (sibling_mask << 1) + 1; cache_affinity->sibling_map[thread / 8] = sibling_mask << (thread % 8); cache_affinity->cache_properties = (cache_props2.edx & CACHE_INCLUSIVE_MASK) ? 2 : 0; cache_affinity->cache_size = (l2_cache_ids & L2_DC_SIZE_MASK) >> L2_DC_SIZE_SHFT; cache_affinity->cache_level = CRAT_L2_CACHE; cache_affinity->lines_per_tag = (l2_cache_ids & L2_DC_LINE_TAG_MASK) >> L2_DC_LINE_TAG_SHFT; cache_affinity->cache_line_size = (l2_cache_ids & L2_DC_LINE_SIZE_MASK) >> L2_DC_LINE_SIZE_SHFT; cache_affinity->associativity = get_associativity( (l2_cache_ids & L2_DC_ASSOC_MASK) >> L2_DC_ASSOC_SHFT); cache_affinity->cache_latency = 1; } /* L3 cache */ if (thread % num_threads_sharing3 == 0) { current = add_crat_cache_entry(&cache_affinity, current); new_entries++; cache_affinity->flags |= CRAT_CACHE_FLAG_DATA_CACHE | CRAT_CACHE_FLAG_INSTR_CACHE; cache_affinity->proc_id_low = thread; sibling_mask = 1; for (size_t sibling = 1; sibling < num_threads_sharing3; sibling++) sibling_mask = (sibling_mask << 1) + 1; cache_affinity->sibling_map[thread / 8] = sibling_mask << (thread % 8); cache_affinity->cache_properties = (cache_props0.edx & CACHE_INCLUSIVE_MASK) ? 2 : 0; cache_affinity->cache_size = ((l3_cache_ids & L3_DC_SIZE_MASK) >> L3_DC_SIZE_SHFT) * 512; cache_affinity->cache_level = CRAT_L3_CACHE; cache_affinity->lines_per_tag = (l3_cache_ids & L3_DC_LINE_TAG_MASK) >> L3_DC_LINE_TAG_SHFT; cache_affinity->cache_line_size = (l3_cache_ids & L3_DC_LINE_SIZE_MASK) >> L3_DC_LINE_SIZE_SHFT; cache_affinity->associativity = get_associativity( (l3_cache_ids & L3_DC_ASSOC_MASK) >> L3_DC_ASSOC_SHFT); cache_affinity->cache_latency = 1; } } crat->total_entries += new_entries; return current; } static uint8_t get_tlb_size(enum tlb_type type, struct crat_tlb *crat_tlb_entry, uint16_t raw_assoc_size) { uint8_t tlbsize; if (raw_assoc_size >= 256) { tlbsize = (uint8_t)(raw_assoc_size / 256); if (type == tlb_2m) crat_tlb_entry->flags |= CRAT_TLB_FLAG_2MB_BASE_256; else if (type == tlb_4k) crat_tlb_entry->flags |= CRAT_TLB_FLAG_4K_BASE_256; else if (type == tlb_1g) crat_tlb_entry->flags |= CRAT_TLB_FLAG_1GB_BASE_256; } else { tlbsize = (uint8_t)(raw_assoc_size); } return tlbsize; } static unsigned long add_crat_tlb_entry(struct crat_tlb **tlb_affinity, unsigned long current) { *tlb_affinity = (struct crat_tlb *)current; memset(*tlb_affinity, 0, sizeof(struct crat_tlb)); (*tlb_affinity)->type = CRAT_TLB_TYPE; (*tlb_affinity)->length = sizeof(struct crat_tlb); (*tlb_affinity)->flags = CRAT_TLB_FLAG_EN | CRAT_TLB_FLAG_CPU_TLB; current += sizeof(struct crat_tlb); return current; } static unsigned long gen_crat_tlb_entry(struct acpi_crat_header *crat, unsigned long current) { size_t total_num_threads, num_threads_sharing0, num_threads_sharing1, num_threads_sharing2, thread, new_entries; struct cpuid_result cache_props0, cache_props1, cache_props2; uint8_t sibling_mask = 0; uint32_t l1_tlb_2M4M_ids, l1_tlb_4K_ids, l2_tlb_2M4M_ids, l2_tlb_4K_ids, l1_tlb_1G_ids, l2_tlb_1G_ids; struct crat_tlb *tlb_affinity = NULL; total_num_threads = get_cpu_count(); cache_props0 = cpuid_ext(CPUID_CACHE_PROPS, CACHE_PROPS_0); cache_props1 = cpuid_ext(CPUID_CACHE_PROPS, CACHE_PROPS_1); cache_props2 = cpuid_ext(CPUID_CACHE_PROPS, CACHE_PROPS_2); l1_tlb_2M4M_ids = cpuid_eax(CPUID_L1_TLB_CACHE_IDS); l2_tlb_2M4M_ids = cpuid_eax(CPUID_L2_L3_CACHE_L2_TLB_IDS); l1_tlb_4K_ids = cpuid_ebx(CPUID_L1_TLB_CACHE_IDS); l2_tlb_4K_ids = cpuid_ebx(CPUID_L2_L3_CACHE_L2_TLB_IDS); l1_tlb_1G_ids = cpuid_eax(CPUID_TLB_L1L2_1G_IDS); l2_tlb_1G_ids = cpuid_ebx(CPUID_TLB_L1L2_1G_IDS); num_threads_sharing0 = ((cache_props0.eax & NUM_SHARE_CACHE_MASK) >> NUM_SHARE_CACHE_SHFT) + 1; num_threads_sharing1 = ((cache_props1.eax & NUM_SHARE_CACHE_MASK) >> NUM_SHARE_CACHE_SHFT) + 1; num_threads_sharing2 = ((cache_props2.eax & NUM_SHARE_CACHE_MASK) >> NUM_SHARE_CACHE_SHFT) + 1; new_entries = 0; for (thread = 0; thread < total_num_threads; thread++) { /* L1 data TLB */ if (thread % num_threads_sharing0 == 0) { current = add_crat_tlb_entry(&tlb_affinity, current); new_entries++; tlb_affinity->flags |= CRAT_TLB_FLAG_DATA_TLB; tlb_affinity->proc_id_low = thread; sibling_mask = 1; for (size_t sibling = 1; sibling < num_threads_sharing0; sibling++) sibling_mask = (sibling_mask << 1) + 1; tlb_affinity->sibling_map[thread / 8] = sibling_mask << (thread % 8); tlb_affinity->tlb_level = CRAT_L1_CACHE; tlb_affinity->data_tlb_2mb_assoc = (l1_tlb_2M4M_ids & L1_DAT_TLB_2M4M_ASSOC_MASK) >> L1_DAT_TLB_2M4M_ASSOC_SHFT; tlb_affinity->data_tlb_2mb_size = get_tlb_size(tlb_2m, tlb_affinity, (l1_tlb_2M4M_ids & L1_DAT_TLB_2M4M_SIZE_MASK) >> L1_DAT_TLB_2M4M_SIZE_SHFT); tlb_affinity->data_tlb_4k_assoc = (l1_tlb_4K_ids & L1_DAT_TLB_4K_ASSOC_MASK) >> L1_DAT_TLB_4K_ASSOC_SHFT; tlb_affinity->data_tlb_4k_size = get_tlb_size(tlb_4k, tlb_affinity, (l1_tlb_4K_ids & L1_DAT_TLB_4K_SIZE_MASK) >> L1_DAT_TLB_4K_SIZE_SHFT); tlb_affinity->data_tlb_1g_assoc = (l1_tlb_1G_ids & L1_DAT_TLB_1G_ASSOC_MASK) >> L1_DAT_TLB_1G_ASSOC_SHFT; tlb_affinity->data_tlb_1g_size = get_tlb_size(tlb_1g, tlb_affinity, (l1_tlb_1G_ids & L1_DAT_TLB_1G_SIZE_MASK) >> L1_DAT_TLB_1G_SIZE_SHFT); } /* L1 instruction TLB */ if (thread % num_threads_sharing1 == 0) { current = add_crat_tlb_entry(&tlb_affinity, current); new_entries++; tlb_affinity->flags |= CRAT_TLB_FLAG_INSTR_TLB; tlb_affinity->proc_id_low = thread; sibling_mask = 1; for (size_t sibling = 1; sibling < num_threads_sharing1; sibling++) sibling_mask = (sibling_mask << 1) + 1; tlb_affinity->sibling_map[thread / 8] = sibling_mask << (thread % 8); tlb_affinity->tlb_level = CRAT_L1_CACHE; tlb_affinity->instr_tlb_2mb_assoc = (l1_tlb_2M4M_ids & L1_INST_TLB_2M4M_ASSOC_MASK) >> L1_INST_TLB_2M4M_ASSOC_SHFT; tlb_affinity->instr_tlb_2mb_size = get_tlb_size(tlb_2m, tlb_affinity, (l1_tlb_2M4M_ids & L1_INST_TLB_2M4M_SIZE_MASK) >> L1_INST_TLB_2M4M_SIZE_SHFT); tlb_affinity->instr_tlb_4k_assoc = (l1_tlb_4K_ids & L1_INST_TLB_4K_ASSOC_MASK) >> L1_INST_TLB_4K_ASSOC_SHFT; tlb_affinity->instr_tlb_4k_size = get_tlb_size(tlb_4k, tlb_affinity, (l1_tlb_4K_ids & L1_INST_TLB_4K_SIZE_MASK) >> L1_INST_TLB_4K_SIZE_SHFT); tlb_affinity->instr_tlb_1g_assoc = (l1_tlb_1G_ids & L1_INST_TLB_1G_ASSOC_MASK) >> L1_INST_TLB_1G_ASSOC_SHFT; tlb_affinity->instr_tlb_1g_size = get_tlb_size(tlb_1g, tlb_affinity, (l1_tlb_1G_ids & L1_INST_TLB_1G_SIZE_MASK) >> L1_INST_TLB_1G_SIZE_SHFT); } /* L2 Data TLB */ if (thread % num_threads_sharing2 == 0) { current = add_crat_tlb_entry(&tlb_affinity, current); new_entries++; tlb_affinity->flags |= CRAT_TLB_FLAG_DATA_TLB; tlb_affinity->proc_id_low = thread; sibling_mask = 1; for (size_t sibling = 1; sibling < num_threads_sharing2; sibling++) sibling_mask = (sibling_mask << 1) + 1; tlb_affinity->sibling_map[thread / 8] = sibling_mask << (thread % 8); tlb_affinity->tlb_level = CRAT_L2_CACHE; tlb_affinity->data_tlb_2mb_assoc = (l2_tlb_2M4M_ids & L2_DAT_TLB_2M4M_ASSOC_MASK) >> L2_DAT_TLB_2M4M_ASSOC_SHFT; tlb_affinity->data_tlb_2mb_size = get_tlb_size(tlb_2m, tlb_affinity, (l2_tlb_2M4M_ids & L2_DAT_TLB_2M4M_SIZE_MASK) >> L2_DAT_TLB_2M4M_SIZE_SHFT); tlb_affinity->data_tlb_4k_assoc = get_associativity((l2_tlb_4K_ids & L2_DAT_TLB_2M4M_ASSOC_MASK) >> L2_DAT_TLB_4K_ASSOC_SHFT); tlb_affinity->data_tlb_4k_size = get_tlb_size(tlb_4k, tlb_affinity, (l2_tlb_2M4M_ids & L2_DAT_TLB_4K_SIZE_MASK) >> L2_DAT_TLB_4K_SIZE_SHFT); tlb_affinity->data_tlb_1g_assoc = get_associativity((l2_tlb_1G_ids & L2_DAT_TLB_1G_ASSOC_MASK) >> L2_DAT_TLB_1G_ASSOC_SHFT); tlb_affinity->data_tlb_1g_size = get_tlb_size(tlb_1g, tlb_affinity, (l2_tlb_1G_ids & L2_DAT_TLB_1G_SIZE_MASK) >> L2_DAT_TLB_1G_SIZE_SHFT); } /* L2 Instruction TLB */ if (thread % num_threads_sharing2 == 0) { current = add_crat_tlb_entry(&tlb_affinity, current); new_entries++; tlb_affinity->flags |= CRAT_TLB_FLAG_INSTR_TLB; tlb_affinity->proc_id_low = thread; sibling_mask = 1; for (size_t sibling = 1; sibling < num_threads_sharing2; sibling++) sibling_mask = (sibling_mask << 1) + 1; tlb_affinity->sibling_map[thread / 8] = sibling_mask << (thread % 8); tlb_affinity->tlb_level = CRAT_L2_CACHE; tlb_affinity->instr_tlb_2mb_assoc = get_associativity( (l2_tlb_2M4M_ids & L2_INST_TLB_2M4M_ASSOC_MASK) >> L2_INST_TLB_2M4M_ASSOC_SHFT); tlb_affinity->instr_tlb_2mb_size = get_tlb_size(tlb_2m, tlb_affinity, (l2_tlb_2M4M_ids & L2_INST_TLB_2M4M_SIZE_MASK) >> L2_INST_TLB_2M4M_SIZE_SHFT); tlb_affinity->instr_tlb_4k_assoc = get_associativity((l2_tlb_4K_ids & L2_INST_TLB_4K_ASSOC_MASK) >> L2_INST_TLB_4K_ASSOC_SHFT); tlb_affinity->instr_tlb_4k_size = get_tlb_size(tlb_4k, tlb_affinity, (l2_tlb_4K_ids & L2_INST_TLB_4K_SIZE_MASK) >> L2_INST_TLB_4K_SIZE_SHFT); tlb_affinity->instr_tlb_1g_assoc = get_associativity((l2_tlb_1G_ids & L2_INST_TLB_1G_ASSOC_MASK) >> L2_INST_TLB_1G_ASSOC_SHFT); tlb_affinity->instr_tlb_1g_size = get_tlb_size(tlb_1g, tlb_affinity, (l2_tlb_1G_ids & L2_INST_TLB_1G_SIZE_MASK) >> L2_INST_TLB_1G_SIZE_SHFT); } } crat->total_entries += new_entries; return current; } static unsigned long acpi_fill_crat(struct acpi_crat_header *crat, unsigned long current) { current = gen_crat_hsa_entry(crat, current); current = gen_crat_memory_entries(crat, current); current = gen_crat_cache_entry(crat, current); current = gen_crat_tlb_entry(crat, current); crat->num_nodes++; return current; } uintptr_t agesa_write_acpi_tables(const struct device *device, uintptr_t current, acpi_rsdp_t *rsdp) { acpi_ivrs_t *ivrs; struct acpi_crat_header *crat; /* CRAT */ current = ALIGN(current, 8); crat = (struct acpi_crat_header *)current; acpi_create_crat(crat, acpi_fill_crat); current += crat->header.length; acpi_add_table(rsdp, crat); current = add_agesa_acpi_table(AMD_FSP_ACPI_ALIB_HOB_GUID, "ALIB", rsdp, current); /* IVRS */ current = ALIGN(current, 8); ivrs = (acpi_ivrs_t *) current; acpi_create_ivrs(ivrs, acpi_fill_ivrs); current += ivrs->header.length; acpi_add_table(rsdp, ivrs); /* Add SRAT, MSCT, SLIT if needed in the future */ return current; }