/* SPDX-License-Identifier: GPL-2.0-only */

/*
 * ACPI - create the Fixed ACPI Description Tables (FADT)
 */

#include <string.h>
#include <console/console.h>
#include <acpi/acpi.h>
#include <acpi/acpi_gnvs.h>
#include <acpi/acpigen.h>
#include <device/pci_ops.h>
#include <arch/ioapic.h>
#include <arch/smp/mpspec.h>
#include <cpu/amd/msr.h>
#include <cpu/x86/smm.h>
#include <cbmem.h>
#include <device/device.h>
#include <device/pci.h>
#include <amdblocks/acpimmio.h>
#include <amdblocks/acpi.h>
#include <soc/acpi.h>
#include <soc/pci_devs.h>
#include <soc/cpu.h>
#include <soc/msr.h>
#include <soc/southbridge.h>
#include <soc/nvs.h>
#include <soc/gpio.h>
#include <version.h>
#include "chip.h"

unsigned long acpi_fill_mcfg(unsigned long current)
{

	current += acpi_create_mcfg_mmconfig((acpi_mcfg_mmconfig_t *)current,
					     CONFIG_MMCONF_BASE_ADDRESS,
					     0,
					     0,
					     CONFIG_MMCONF_BUS_NUMBER - 1);

	return current;
}

unsigned long acpi_fill_madt(unsigned long current)
{
	const struct soc_amd_picasso_config *cfg = config_of_soc();
	unsigned int i;
	uint8_t irq;
	uint8_t flags;

	/* create all subtables for processors */
	current = acpi_create_madt_lapics(current);

	current += acpi_create_madt_ioapic((acpi_madt_ioapic_t *)current,
			CONFIG_PICASSO_FCH_IOAPIC_ID, IO_APIC_ADDR, 0);

	current += acpi_create_madt_ioapic((acpi_madt_ioapic_t *)current,
			CONFIG_PICASSO_GNB_IOAPIC_ID, GNB_IO_APIC_ADDR, IO_APIC_INTERRUPTS);

	/* 0: mean bus 0--->ISA */
	/* 0: PIC 0 */
	/* 2: APIC 2 */
	/* 5 mean: 0101 --> Edge-triggered, Active high */
	current += acpi_create_madt_irqoverride((acpi_madt_irqoverride_t *)
						current, 0, 0, 2, 0);
	current += acpi_create_madt_irqoverride(
		(acpi_madt_irqoverride_t *)current, 0, 9, 9,
		MP_IRQ_TRIGGER_LEVEL | MP_IRQ_POLARITY_LOW);

	for (i = 0; i < ARRAY_SIZE(cfg->irq_override); ++i) {
		irq = cfg->irq_override[i].irq;
		flags = cfg->irq_override[i].flags;

		if (!flags)
			continue;

		current += acpi_create_madt_irqoverride((acpi_madt_irqoverride_t *)current, 0,
							irq, irq, flags);
	}

	/* create all subtables for processors */
	current += acpi_create_madt_lapic_nmi((acpi_madt_lapic_nmi_t *)current,
			0xff, 5, 1);
	/* 1: LINT1 connect to NMI */

	return current;
}

/*
 * Reference section 5.2.9 Fixed ACPI Description Table (FADT)
 * in the ACPI 3.0b specification.
 */
void acpi_fill_fadt(acpi_fadt_t *fadt)
{
	const struct soc_amd_picasso_config *cfg = config_of_soc();

	printk(BIOS_DEBUG, "pm_base: 0x%04x\n", PICASSO_ACPI_IO_BASE);

	fadt->sci_int = 9;		/* IRQ 09 - ACPI SCI */

	if (permanent_smi_handler()) {
		fadt->smi_cmd = APM_CNT;
		fadt->acpi_enable = APM_CNT_ACPI_ENABLE;
		fadt->acpi_disable = APM_CNT_ACPI_DISABLE;
	}

	fadt->pm1a_evt_blk = ACPI_PM_EVT_BLK;
	fadt->pm1a_cnt_blk = ACPI_PM1_CNT_BLK;
	fadt->pm_tmr_blk = ACPI_PM_TMR_BLK;
	fadt->gpe0_blk = ACPI_GPE0_BLK;

	fadt->pm1_evt_len = 4;	/* 32 bits */
	fadt->pm1_cnt_len = 2;	/* 16 bits */
	fadt->pm_tmr_len = 4;	/* 32 bits */
	fadt->gpe0_blk_len = 8;	/* 64 bits */

	fadt->p_lvl2_lat = ACPI_FADT_C2_NOT_SUPPORTED;
	fadt->p_lvl3_lat = ACPI_FADT_C3_NOT_SUPPORTED;
	fadt->duty_offset = 1;	/* CLK_VAL bits 3:1 */
	fadt->duty_width = 3;	/* CLK_VAL bits 3:1 */
	fadt->day_alrm = 0x0d;
	fadt->mon_alrm = 0;
	fadt->century = 0x32;
	fadt->iapc_boot_arch = cfg->fadt_boot_arch; /* legacy free default */
	fadt->res2 = 0;		/* reserved, MUST be 0 ACPI 3.0 */
	fadt->flags |=	ACPI_FADT_WBINVD | /* See table 5-34 ACPI 6.3 spec */
			ACPI_FADT_C1_SUPPORTED |
			ACPI_FADT_S4_RTC_WAKE |
			ACPI_FADT_32BIT_TIMER |
			ACPI_FADT_PCI_EXPRESS_WAKE |
			ACPI_FADT_PLATFORM_CLOCK |
			ACPI_FADT_S4_RTC_VALID |
			ACPI_FADT_REMOTE_POWER_ON;
	fadt->flags |= cfg->fadt_flags; /* additional board-specific flags */

	fadt->ARM_boot_arch = 0;	/* MUST be 0 ACPI 3.0 */
	fadt->FADT_MinorVersion = 0;	/* MUST be 0 ACPI 3.0 */

	fadt->x_firmware_ctl_l = 0;	/* set to 0 if firmware_ctrl is used */
	fadt->x_firmware_ctl_h = 0;

	fadt->x_pm1a_evt_blk.space_id = ACPI_ADDRESS_SPACE_IO;
	fadt->x_pm1a_evt_blk.bit_width = 32;
	fadt->x_pm1a_evt_blk.bit_offset = 0;
	fadt->x_pm1a_evt_blk.access_size = ACPI_ACCESS_SIZE_WORD_ACCESS;
	fadt->x_pm1a_evt_blk.addrl = ACPI_PM_EVT_BLK;
	fadt->x_pm1a_evt_blk.addrh = 0x0;

	fadt->x_pm1a_cnt_blk.space_id = ACPI_ADDRESS_SPACE_IO;
	fadt->x_pm1a_cnt_blk.bit_width = 16;
	fadt->x_pm1a_cnt_blk.bit_offset = 0;
	fadt->x_pm1a_cnt_blk.access_size = ACPI_ACCESS_SIZE_WORD_ACCESS;
	fadt->x_pm1a_cnt_blk.addrl = ACPI_PM1_CNT_BLK;
	fadt->x_pm1a_cnt_blk.addrh = 0x0;

	fadt->x_pm_tmr_blk.space_id = ACPI_ADDRESS_SPACE_IO;
	fadt->x_pm_tmr_blk.bit_width = 32;
	fadt->x_pm_tmr_blk.bit_offset = 0;
	fadt->x_pm_tmr_blk.access_size = ACPI_ACCESS_SIZE_DWORD_ACCESS;
	fadt->x_pm_tmr_blk.addrl = ACPI_PM_TMR_BLK;
	fadt->x_pm_tmr_blk.addrh = 0x0;

	fadt->x_gpe0_blk.space_id = ACPI_ADDRESS_SPACE_IO;
	fadt->x_gpe0_blk.bit_width = 64; /* EventStatus + Event Enable */
	fadt->x_gpe0_blk.bit_offset = 0;
	fadt->x_gpe0_blk.access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS;
	fadt->x_gpe0_blk.addrl = ACPI_GPE0_BLK;
	fadt->x_gpe0_blk.addrh = 0x0;
}

static uint32_t get_pstate_core_freq(msr_t pstate_def)
{
	uint32_t core_freq, core_freq_mul, core_freq_div;
	bool valid_freq_divisor;

	/* Core frequency multiplier */
	core_freq_mul = pstate_def.lo & PSTATE_DEF_LO_FREQ_MUL_MASK;

	/* Core frequency divisor ID */
	core_freq_div =
		(pstate_def.lo & PSTATE_DEF_LO_FREQ_DIV_MASK) >> PSTATE_DEF_LO_FREQ_DIV_SHIFT;

	if (core_freq_div == 0) {
		return 0;
	} else if ((core_freq_div >= PSTATE_DEF_LO_FREQ_DIV_MIN)
		   && (core_freq_div <= PSTATE_DEF_LO_EIGHTH_STEP_MAX)) {
		/* Allow 1/8 integer steps for this range */
		valid_freq_divisor = 1;
	} else if ((core_freq_div > PSTATE_DEF_LO_EIGHTH_STEP_MAX)
		   && (core_freq_div <= PSTATE_DEF_LO_FREQ_DIV_MAX) && !(core_freq_div & 0x1)) {
		/* Only allow 1/4 integer steps for this range */
		valid_freq_divisor = 1;
	} else {
		valid_freq_divisor = 0;
	}

	if (valid_freq_divisor) {
		/* 25 * core_freq_mul / (core_freq_div / 8) */
		core_freq =
			((PSTATE_DEF_LO_CORE_FREQ_BASE * core_freq_mul * 8) / (core_freq_div));
	} else {
		printk(BIOS_WARNING, "Undefined core_freq_div %x used. Force to 1.\n",
		       core_freq_div);
		core_freq = (PSTATE_DEF_LO_CORE_FREQ_BASE * core_freq_mul);
	}
	return core_freq;
}

static uint32_t get_pstate_core_power(msr_t pstate_def)
{
	uint32_t voltage_in_uvolts, core_vid, current_value_amps, current_divisor, power_in_mw;

	/* Core voltage ID */
	core_vid =
		(pstate_def.lo & PSTATE_DEF_LO_CORE_VID_MASK) >> PSTATE_DEF_LO_CORE_VID_SHIFT;

	/* Current value in amps */
	current_value_amps =
		(pstate_def.lo & PSTATE_DEF_LO_CUR_VAL_MASK) >> PSTATE_DEF_LO_CUR_VAL_SHIFT;

	/* Current divisor */
	current_divisor =
		(pstate_def.lo & PSTATE_DEF_LO_CUR_DIV_MASK) >> PSTATE_DEF_LO_CUR_DIV_SHIFT;

	/* Voltage */
	if ((core_vid >= 0xF8) && (core_vid <= 0xFF)) {
		/* Voltage off for VID codes 0xF8 to 0xFF */
		voltage_in_uvolts = 0;
	} else {
		voltage_in_uvolts =
			SERIAL_VID_MAX_MICROVOLTS - (SERIAL_VID_DECODE_MICROVOLTS * core_vid);
	}

	/* Power in mW */
	power_in_mw = (voltage_in_uvolts) / 1000 * current_value_amps;

	switch (current_divisor) {
	case 0:
		break;
	case 1:
		power_in_mw = power_in_mw / 10L;
		break;
	case 2:
		power_in_mw = power_in_mw / 100L;
		break;
	case 3:
		/* current_divisor is set to an undefined value.*/
		printk(BIOS_WARNING, "Undefined current_divisor set for enabled P-state .\n");
		power_in_mw = 0;
		break;
	}

	return power_in_mw;
}

/*
 * Populate structure describing enabled p-states and return count of enabled p-states.
 */
static size_t get_pstate_info(struct acpi_sw_pstate *pstate_values,
			      struct acpi_xpss_sw_pstate *pstate_xpss_values)
{
	msr_t pstate_def;
	size_t pstate_count, pstate;
	uint32_t pstate_enable, max_pstate;

	pstate_count = 0;
	max_pstate = (rdmsr(PS_LIM_REG).lo & PS_LIM_MAX_VAL_MASK) >> PS_MAX_VAL_SHFT;

	for (pstate = 0; pstate <= max_pstate; pstate++) {
		pstate_def = rdmsr(PSTATE_0_MSR + pstate);

		pstate_enable = (pstate_def.hi & PSTATE_DEF_HI_ENABLE_MASK)
				>> PSTATE_DEF_HI_ENABLE_SHIFT;
		if (!pstate_enable)
			continue;

		pstate_values[pstate_count].core_freq = get_pstate_core_freq(pstate_def);
		pstate_values[pstate_count].power = get_pstate_core_power(pstate_def);
		pstate_values[pstate_count].transition_latency = 0;
		pstate_values[pstate_count].bus_master_latency = 0;
		pstate_values[pstate_count].control_value = pstate;
		pstate_values[pstate_count].status_value = pstate;

		pstate_xpss_values[pstate_count].core_freq =
			(uint64_t)pstate_values[pstate_count].core_freq;
		pstate_xpss_values[pstate_count].power =
			(uint64_t)pstate_values[pstate_count].power;
		pstate_xpss_values[pstate_count].transition_latency = 0;
		pstate_xpss_values[pstate_count].bus_master_latency = 0;
		pstate_xpss_values[pstate_count].control_value = (uint64_t)pstate;
		pstate_xpss_values[pstate_count].status_value = (uint64_t)pstate;
		pstate_count++;
	}

	return pstate_count;
}

void generate_cpu_entries(const struct device *device)
{
	int logical_cores;
	size_t pstate_count, cpu, proc_blk_len;
	struct acpi_sw_pstate pstate_values[MAX_PSTATES] = { {0} };
	struct acpi_xpss_sw_pstate pstate_xpss_values[MAX_PSTATES] = { {0} };
	uint32_t threads_per_core, proc_blk_addr;
	uint32_t cstate_base_address =
		rdmsr(MSR_CSTATE_ADDRESS).lo & MSR_CSTATE_ADDRESS_MASK;

	const acpi_addr_t perf_ctrl = {
		.space_id = ACPI_ADDRESS_SPACE_FIXED,
		.bit_width = 64,
		.addrl = PS_CTL_REG,
	};
	const acpi_addr_t perf_sts = {
		.space_id = ACPI_ADDRESS_SPACE_FIXED,
		.bit_width = 64,
		.addrl = PS_STS_REG,
	};

	acpi_cstate_t cstate_info[] = {
		[0] = {
			.ctype = 1,
			.latency = 1,
			.power = 0,
			.resource = {
				.space_id = ACPI_ADDRESS_SPACE_FIXED,
				.bit_width = 2,
				.bit_offset = 2,
				.addrl = 0,
				.addrh = 0,
			},
		},
		[1] = {
			.ctype = 2,
			.latency = 400,
			.power = 0,
			.resource = {
				.space_id = ACPI_ADDRESS_SPACE_IO,
				.bit_width = 8,
				.bit_offset = 0,
				.addrl = cstate_base_address + 1,
				.addrh = 0,
				.access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS,
			},
		},
	};

	threads_per_core = ((cpuid_ebx(CPUID_EBX_CORE_ID) & CPUID_EBX_THREADS_MASK)
			    >> CPUID_EBX_THREADS_SHIFT)
			   + 1;
	pstate_count = get_pstate_info(pstate_values, pstate_xpss_values);
	logical_cores = get_cpu_count();

	for (cpu = 0; cpu < logical_cores; cpu++) {

		if (cpu == 0) {
			/* BSP values for \_SB.Pxxx */
			proc_blk_len = 6;
			proc_blk_addr = ACPI_GPE0_BLK;
		} else {
			/* AP values for \_SB.Pxxx */
			proc_blk_addr = 0;
			proc_blk_len = 0;
		}

		acpigen_write_processor(cpu, proc_blk_addr, proc_blk_len);

		acpigen_write_pct_package(&perf_ctrl, &perf_sts);

		acpigen_write_pss_object(pstate_values, pstate_count);

		acpigen_write_xpss_object(pstate_xpss_values, pstate_count);

		if (CONFIG(ACPI_SSDT_PSD_INDEPENDENT))
			acpigen_write_PSD_package(cpu / threads_per_core, threads_per_core,
						  HW_ALL);
		else
			acpigen_write_PSD_package(0, logical_cores, SW_ALL);

		acpigen_write_PPC(0);

		acpigen_write_CST_package(cstate_info, ARRAY_SIZE(cstate_info));

		acpigen_write_CSD_package(cpu >> 1, threads_per_core, HW_ALL, 0);

		acpigen_pop_len();
	}
}

unsigned long southbridge_write_acpi_tables(const struct device *device,
		unsigned long current,
		struct acpi_rsdp *rsdp)
{
	return acpi_write_hpet(device, current, rsdp);
}

void acpi_create_gnvs(struct global_nvs *gnvs)
{
	/* Clear out GNVS. */
	memset(gnvs, 0, sizeof(*gnvs));

	if (CONFIG(CONSOLE_CBMEM))
		gnvs->cbmc = (uintptr_t)cbmem_find(CBMEM_ID_CONSOLE);

	if (CONFIG(CHROMEOS)) {
		/* Initialize Verified Boot data */
		chromeos_init_chromeos_acpi(&gnvs->chromeos);
		gnvs->chromeos.vbt2 = ACTIVE_ECFW_RO;
	}

	/* Set unknown wake source */
	gnvs->pm1i = ~0ULL;
	gnvs->gpei = ~0ULL;

	/* CPU core count */
	gnvs->pcnt = dev_count_cpu();
}

void southbridge_inject_dsdt(const struct device *device)
{
	struct global_nvs *gnvs;

	gnvs = cbmem_find(CBMEM_ID_ACPI_GNVS);

	if (gnvs) {
		acpi_create_gnvs(gnvs);

		/* Add it to DSDT */
		acpigen_write_scope("\\");
		acpigen_write_name_dword("NVSA", (uintptr_t)gnvs);
		acpigen_pop_len();
	}
}

static void acpigen_soc_get_gpio_in_local5(uintptr_t addr)
{
	/*
	 *   Store (\_SB.GPR2 (addr), Local5)
	 * \_SB.GPR2 is used to read control byte 2 from control register.
	 * / It is defined in gpio_lib.asl.
	 */
	acpigen_write_store();
	acpigen_emit_namestring("\\_SB.GPR2");
	acpigen_write_integer(addr);
	acpigen_emit_byte(LOCAL5_OP);
}

static int acpigen_soc_get_gpio_val(unsigned int gpio_num, uint32_t mask)
{
	if (gpio_num >= SOC_GPIO_TOTAL_PINS) {
		printk(BIOS_WARNING, "Warning: Pin %d should be smaller than"
					" %d\n", gpio_num, SOC_GPIO_TOTAL_PINS);
		return -1;
	}
	uintptr_t addr = gpio_get_address(gpio_num);

	acpigen_soc_get_gpio_in_local5(addr);

	/* If (And (Local5, mask)) */
	acpigen_write_if_and(LOCAL5_OP, mask);

	/* Store (One, Local0) */
	acpigen_write_store_ops(ONE_OP, LOCAL0_OP);

	acpigen_pop_len();	/* If */

	/* Else */
	acpigen_write_else();

	/* Store (Zero, Local0) */
	acpigen_write_store_ops(ZERO_OP, LOCAL0_OP);

	acpigen_pop_len();	/* Else */

	return 0;
}

static int acpigen_soc_set_gpio_val(unsigned int gpio_num, uint32_t val)
{
	if (gpio_num >= SOC_GPIO_TOTAL_PINS) {
		printk(BIOS_WARNING, "Warning: Pin %d should be smaller than"
					" %d\n", gpio_num, SOC_GPIO_TOTAL_PINS);
		return -1;
	}
	uintptr_t addr = gpio_get_address(gpio_num);

	/* Store (0x40, Local0) */
	acpigen_write_store();
	acpigen_write_integer(GPIO_PIN_OUT);
	acpigen_emit_byte(LOCAL0_OP);

	acpigen_soc_get_gpio_in_local5(addr);

	if (val) {
		/* Or (Local5, GPIO_PIN_OUT, Local5) */
		acpigen_write_or(LOCAL5_OP, LOCAL0_OP, LOCAL5_OP);
	} else {
		/* Not (GPIO_PIN_OUT, Local6) */
		acpigen_write_not(LOCAL0_OP, LOCAL6_OP);

		/* And (Local5, Local6, Local5) */
		acpigen_write_and(LOCAL5_OP, LOCAL6_OP, LOCAL5_OP);
	}

	/*
	 *   SB.GPW2 (addr, Local5)
	 * \_SB.GPW2 is used to write control byte in control register
	 * / byte 2. It is defined in gpio_lib.asl.
	 */
	acpigen_emit_namestring("\\_SB.GPW2");
	acpigen_write_integer(addr);
	acpigen_emit_byte(LOCAL5_OP);

	return 0;
}

int acpigen_soc_read_rx_gpio(unsigned int gpio_num)
{
	return acpigen_soc_get_gpio_val(gpio_num, GPIO_PIN_IN);
}

int acpigen_soc_get_tx_gpio(unsigned int gpio_num)
{
	return acpigen_soc_get_gpio_val(gpio_num, GPIO_PIN_OUT);
}

int acpigen_soc_set_tx_gpio(unsigned int gpio_num)
{
	return acpigen_soc_set_gpio_val(gpio_num, 1);
}

int acpigen_soc_clear_tx_gpio(unsigned int gpio_num)
{
	return acpigen_soc_set_gpio_val(gpio_num, 0);
}