/* SPDX-License-Identifier: GPL-2.0-only */ /* TODO: Update for Glinda */ /* TODO: See what can be made common */ /* ACPI - create the Fixed ACPI Description Tables (FADT) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "chip.h" unsigned long acpi_fill_madt(unsigned long current) { /* create all subtables for processors */ current = acpi_create_madt_lapics_with_nmis(current); current += acpi_create_madt_ioapic_from_hw((acpi_madt_ioapic_t *)current, IO_APIC_ADDR); current += acpi_create_madt_ioapic_from_hw((acpi_madt_ioapic_t *)current, GNB_IO_APIC_ADDR); /* PIT is connected to legacy IRQ 0, but IOAPIC GSI 2 */ current += acpi_create_madt_irqoverride((acpi_madt_irqoverride_t *)current, MP_BUS_ISA, 0, 2, MP_IRQ_TRIGGER_DEFAULT | MP_IRQ_POLARITY_DEFAULT); /* SCI IRQ type override */ current += acpi_create_madt_irqoverride((acpi_madt_irqoverride_t *)current, MP_BUS_ISA, ACPI_SCI_IRQ, ACPI_SCI_IRQ, MP_IRQ_TRIGGER_LEVEL | MP_IRQ_POLARITY_LOW); current = acpi_fill_madt_irqoverride(current); return current; } /* * Reference section 5.2.9 Fixed ACPI Description Table (FADT) * in the ACPI 3.0b specification. */ void acpi_fill_fadt(acpi_fadt_t *fadt) { const struct soc_amd_glinda_config *cfg = config_of_soc(); printk(BIOS_DEBUG, "pm_base: 0x%04x\n", ACPI_IO_BASE); fadt->sci_int = ACPI_SCI_IRQ; if (permanent_smi_handler()) { fadt->smi_cmd = APM_CNT; fadt->acpi_enable = APM_CNT_ACPI_ENABLE; fadt->acpi_disable = APM_CNT_ACPI_DISABLE; } fadt->pm1a_evt_blk = ACPI_PM_EVT_BLK; fadt->pm1a_cnt_blk = ACPI_PM1_CNT_BLK; fadt->pm_tmr_blk = ACPI_PM_TMR_BLK; fadt->gpe0_blk = ACPI_GPE0_BLK; fadt->pm1_evt_len = 4; /* 32 bits */ fadt->pm1_cnt_len = 2; /* 16 bits */ fadt->pm_tmr_len = 4; /* 32 bits */ fadt->gpe0_blk_len = 8; /* 64 bits */ fill_fadt_extended_pm_regs(fadt); /* p_lvl2_lat and p_lvl3_lat match what the AGESA code does, but those values are overridden by the _CST packages in the processor devices. */ fadt->p_lvl2_lat = ACPI_FADT_C2_NOT_SUPPORTED; fadt->p_lvl3_lat = ACPI_FADT_C3_NOT_SUPPORTED; fadt->duty_offset = 0; /* Not supported */ fadt->duty_width = 0; /* Not supported */ fadt->day_alrm = RTC_DATE_ALARM; fadt->century = RTC_ALT_CENTURY; fadt->iapc_boot_arch = cfg->common_config.fadt_boot_arch; /* legacy free default */ fadt->flags |= ACPI_FADT_WBINVD | /* See table 5-34 ACPI 6.3 spec */ ACPI_FADT_C1_SUPPORTED | ACPI_FADT_S4_RTC_WAKE | ACPI_FADT_32BIT_TIMER | ACPI_FADT_PCI_EXPRESS_WAKE | ACPI_FADT_PLATFORM_CLOCK | ACPI_FADT_S4_RTC_VALID | ACPI_FADT_REMOTE_POWER_ON; if (cfg->s0ix_enable) fadt->flags |= ACPI_FADT_LOW_PWR_IDLE_S0; fadt->flags |= cfg->common_config.fadt_flags; /* additional board-specific flags */ } static uint32_t get_pstate_core_freq(msr_t pstate_def) { uint32_t core_freq, core_freq_mul, core_freq_div; bool valid_freq_divisor; /* Core frequency multiplier */ core_freq_mul = pstate_def.lo & PSTATE_DEF_LO_FREQ_MUL_MASK; /* Core frequency divisor ID */ core_freq_div = (pstate_def.lo & PSTATE_DEF_LO_FREQ_DIV_MASK) >> PSTATE_DEF_LO_FREQ_DIV_SHIFT; if (core_freq_div == 0) { return 0; } else if ((core_freq_div >= PSTATE_DEF_LO_FREQ_DIV_MIN) && (core_freq_div <= PSTATE_DEF_LO_EIGHTH_STEP_MAX)) { /* Allow 1/8 integer steps for this range */ valid_freq_divisor = 1; } else if ((core_freq_div > PSTATE_DEF_LO_EIGHTH_STEP_MAX) && (core_freq_div <= PSTATE_DEF_LO_FREQ_DIV_MAX) && !(core_freq_div & 0x1)) { /* Only allow 1/4 integer steps for this range */ valid_freq_divisor = 1; } else { valid_freq_divisor = 0; } if (valid_freq_divisor) { /* 25 * core_freq_mul / (core_freq_div / 8) */ core_freq = ((PSTATE_DEF_LO_CORE_FREQ_BASE * core_freq_mul * 8) / (core_freq_div)); } else { printk(BIOS_WARNING, "Undefined core_freq_div %x used. Force to 1.\n", core_freq_div); core_freq = (PSTATE_DEF_LO_CORE_FREQ_BASE * core_freq_mul); } return core_freq; } static uint32_t get_pstate_core_power(msr_t pstate_def) { uint32_t voltage_in_uvolts, core_vid, current_value_amps, current_divisor, power_in_mw; /* Core voltage ID */ core_vid = (pstate_def.lo & PSTATE_DEF_LO_CORE_VID_MASK) >> PSTATE_DEF_LO_CORE_VID_SHIFT; /* Current value in amps */ current_value_amps = (pstate_def.lo & PSTATE_DEF_LO_CUR_VAL_MASK) >> PSTATE_DEF_LO_CUR_VAL_SHIFT; /* Current divisor */ current_divisor = (pstate_def.lo & PSTATE_DEF_LO_CUR_DIV_MASK) >> PSTATE_DEF_LO_CUR_DIV_SHIFT; /* Voltage */ if (core_vid == 0x00) { /* Voltage off for VID code 0x00 */ voltage_in_uvolts = 0; } else { voltage_in_uvolts = SERIAL_VID_BASE_MICROVOLTS + (SERIAL_VID_DECODE_MICROVOLTS * core_vid); } /* Power in mW */ power_in_mw = (voltage_in_uvolts) / 10 * current_value_amps; switch (current_divisor) { case 0: power_in_mw = power_in_mw / 100L; break; case 1: power_in_mw = power_in_mw / 1000L; break; case 2: power_in_mw = power_in_mw / 10000L; break; case 3: /* current_divisor is set to an undefined value.*/ printk(BIOS_WARNING, "Undefined current_divisor set for enabled P-state .\n"); power_in_mw = 0; break; } return power_in_mw; } /* * Populate structure describing enabled p-states and return count of enabled p-states. */ static size_t get_pstate_info(struct acpi_sw_pstate *pstate_values, struct acpi_xpss_sw_pstate *pstate_xpss_values) { msr_t pstate_def; size_t pstate_count, pstate; uint32_t pstate_enable, max_pstate; pstate_count = 0; max_pstate = (rdmsr(PS_LIM_REG).lo & PS_LIM_MAX_VAL_MASK) >> PS_MAX_VAL_SHFT; for (pstate = 0; pstate <= max_pstate; pstate++) { pstate_def = rdmsr(PSTATE_MSR(pstate)); pstate_enable = (pstate_def.hi & PSTATE_DEF_HI_ENABLE_MASK) >> PSTATE_DEF_HI_ENABLE_SHIFT; if (!pstate_enable) continue; pstate_values[pstate_count].core_freq = get_pstate_core_freq(pstate_def); pstate_values[pstate_count].power = get_pstate_core_power(pstate_def); pstate_values[pstate_count].transition_latency = 0; pstate_values[pstate_count].bus_master_latency = 0; pstate_values[pstate_count].control_value = pstate; pstate_values[pstate_count].status_value = pstate; pstate_xpss_values[pstate_count].core_freq = (uint64_t)pstate_values[pstate_count].core_freq; pstate_xpss_values[pstate_count].power = (uint64_t)pstate_values[pstate_count].power; pstate_xpss_values[pstate_count].transition_latency = 0; pstate_xpss_values[pstate_count].bus_master_latency = 0; pstate_xpss_values[pstate_count].control_value = (uint64_t)pstate; pstate_xpss_values[pstate_count].status_value = (uint64_t)pstate; pstate_count++; } return pstate_count; } void generate_cpu_entries(const struct device *device) { int logical_cores; size_t pstate_count, cpu; struct acpi_sw_pstate pstate_values[MAX_PSTATES] = { {0} }; struct acpi_xpss_sw_pstate pstate_xpss_values[MAX_PSTATES] = { {0} }; uint32_t threads_per_core; uint32_t cstate_base_address = rdmsr(MSR_CSTATE_ADDRESS).lo & MSR_CSTATE_ADDRESS_MASK; const acpi_addr_t perf_ctrl = { .space_id = ACPI_ADDRESS_SPACE_FIXED, .bit_width = 64, .addrl = PS_CTL_REG, }; const acpi_addr_t perf_sts = { .space_id = ACPI_ADDRESS_SPACE_FIXED, .bit_width = 64, .addrl = PS_STS_REG, }; const acpi_cstate_t cstate_info[] = { [0] = { .ctype = 1, .latency = 1, .power = 0, .resource = { .space_id = ACPI_ADDRESS_SPACE_FIXED, .bit_width = 2, .bit_offset = 2, .addrl = 0, .addrh = 0, }, }, [1] = { .ctype = 2, .latency = 0x12, .power = 0, .resource = { .space_id = ACPI_ADDRESS_SPACE_IO, .bit_width = 8, .bit_offset = 0, .addrl = cstate_base_address + 1, .addrh = 0, .access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS, }, }, [2] = { .ctype = 3, .latency = 350, .power = 0, .resource = { .space_id = ACPI_ADDRESS_SPACE_IO, .bit_width = 8, .bit_offset = 0, .addrl = cstate_base_address + 2, .addrh = 0, .access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS, }, }, }; threads_per_core = get_threads_per_core(); pstate_count = get_pstate_info(pstate_values, pstate_xpss_values); logical_cores = get_cpu_count(); for (cpu = 0; cpu < logical_cores; cpu++) { acpigen_write_processor_device(cpu); acpigen_write_pct_package(&perf_ctrl, &perf_sts); acpigen_write_pss_object(pstate_values, pstate_count); acpigen_write_xpss_object(pstate_xpss_values, pstate_count); if (CONFIG(ACPI_SSDT_PSD_INDEPENDENT)) acpigen_write_PSD_package(cpu / threads_per_core, threads_per_core, HW_ALL); else acpigen_write_PSD_package(0, logical_cores, SW_ALL); acpigen_write_PPC(0); acpigen_write_CST_package(cstate_info, ARRAY_SIZE(cstate_info)); acpigen_write_CSD_package(cpu / threads_per_core, threads_per_core, CSD_HW_ALL, 0); generate_cppc_entries(cpu); acpigen_write_processor_device_end(); } acpigen_write_processor_package("PPKG", 0, logical_cores); }