/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include <2struct.h> static int transfer_buffer_valid(const struct transfer_info_struct *ptr) { if (ptr->magic_val == TRANSFER_MAGIC_VAL && ptr->struct_bytes == sizeof(*ptr)) return 1; else return 0; } void verify_psp_transfer_buf(void) { if (*(uint32_t *)_vboot2_work == VB2_SHARED_DATA_MAGIC) { cmos_write(0x00, CMOS_RECOVERY_BYTE); return; } /* * If CMOS is valid and the system has already been rebooted once, but * still returns here, instead of rebooting to verstage again, assume * that the system is in a reboot loop and halt. */ if ((!vbnv_cmos_failed()) && cmos_read(CMOS_RECOVERY_BYTE) == CMOS_RECOVERY_MAGIC_VAL) die("Error: Reboot into recovery was unsuccessful. Halting."); printk(BIOS_ERR, "VBOOT workbuf not valid.\n"); printk(BIOS_DEBUG, "Signature: %#08x\n", *(uint32_t *)_vboot2_work); cmos_init(0); cmos_write(CMOS_RECOVERY_MAGIC_VAL, CMOS_RECOVERY_BYTE); warm_reset(); } void show_psp_transfer_info(void) { struct transfer_info_struct *info = (struct transfer_info_struct *) (void *)(uintptr_t)_transfer_buffer; if (transfer_buffer_valid(info)) { if ((info->psp_info & PSP_INFO_VALID) == 0) { printk(BIOS_INFO, "No PSP info found in transfer buffer.\n"); return; } printk(BIOS_INFO, "PSP boot mode: %s\n", info->psp_info & PSP_INFO_PRODUCTION_MODE ? "Production" : "Development"); printk(BIOS_INFO, "Silicon level: %s\n", info->psp_info & PSP_INFO_PRODUCTION_SILICON ? "Production" : "Pre-Production"); } } static void setup_cbmem_console(const struct transfer_info_struct *info) { void *cbmemc; size_t cbmemc_size; if (info->console_offset < sizeof(*info)) return; if (info->timestamp_offset <= info->console_offset) return; cbmemc_size = info->timestamp_offset - info->console_offset; if (info->console_offset + cbmemc_size > info->buffer_size) return; cbmemc = (void *)((uintptr_t)info + info->console_offset); /* We need to manually initialize cbmemc so we can fill the new buffer. cbmemc_init() * will also be called later in console_hw_init(), but it will be a no-op. */ cbmemc_init(); cbmemc_copy_in(cbmemc, cbmemc_size); } void boot_with_psp_timestamp(uint64_t base_timestamp) { const struct transfer_info_struct *info = (const struct transfer_info_struct *) (void *)(uintptr_t)_transfer_buffer; if (!transfer_buffer_valid(info) || info->timestamp == 0) return; setup_cbmem_console(info); /* * info->timestamp is PSP's timestamp (in microseconds) * when x86 processor is released. */ uint64_t psp_last_ts = info->timestamp; int i; struct timestamp_table *psp_ts_table = (struct timestamp_table *)(void *) ((uintptr_t)_transfer_buffer + info->timestamp_offset); /* new base_timestamp will be offset for all PSP timestamps. */ base_timestamp -= psp_last_ts; for (i = 0; i < psp_ts_table->num_entries; i++) { struct timestamp_entry *tse = &psp_ts_table->entries[i]; /* * We ignore the time between x86 processor release and bootblock. * Since timestamp_add subtracts base_time, we first add old base_time * to make it absolute then add base_timestamp again since * it'll be a new base_time. * * We don't need to convert unit since both PSP and coreboot * will use 1us granularity. * */ tse->entry_stamp += psp_ts_table->base_time + base_timestamp; } bootblock_main_with_timestamp(base_timestamp, psp_ts_table->entries, psp_ts_table->num_entries); }