/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include void data_fabric_set_mmio_np(void) { /* * Mark region from HPET-LAPIC or 0xfed00000-0xfee00000-1 as NP. * * AGESA has already programmed the NB MMIO routing, however nothing * is yet marked as non-posted. * * If there exists an overlapping routing base/limit pair, trim its * base or limit to avoid the new NP region. If any pair exists * completely within HPET-LAPIC range, remove it. If any pair surrounds * HPET-LAPIC, it must be split into two regions. * * TODO(b/156296146): Remove the settings from AGESA and allow coreboot * to own everything. If not practical, consider erasing all settings * and have coreboot reprogram them. At that time, make the source * below more flexible. * * Note that the code relies on the granularity of the HPET and * LAPIC addresses being sufficiently large that the shifted limits * +/-1 are always equivalent to the non-shifted values +/-1. */ unsigned int i; int reg; uint32_t base, limit, ctrl; const uint32_t np_bot = HPET_BASE_ADDRESS >> D18F0_MMIO_SHIFT; const uint32_t np_top = (LAPIC_DEFAULT_BASE - 1) >> D18F0_MMIO_SHIFT; data_fabric_print_mmio_conf(); for (i = 0; i < NUM_NB_MMIO_REGS; i++) { /* Adjust all registers that overlap */ ctrl = data_fabric_broadcast_read32(0, NB_MMIO_CONTROL(i)); if (!(ctrl & (DF_MMIO_WE | DF_MMIO_RE))) continue; /* not enabled */ base = data_fabric_broadcast_read32(0, NB_MMIO_BASE(i)); limit = data_fabric_broadcast_read32(0, NB_MMIO_LIMIT(i)); if (base > np_top || limit < np_bot) continue; /* no overlap at all */ if (base >= np_bot && limit <= np_top) { data_fabric_disable_mmio_reg(i); /* 100% within, so remove */ continue; } if (base < np_bot && limit > np_top) { /* Split the configured region */ data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(i), np_bot - 1); reg = data_fabric_find_unused_mmio_reg(); if (reg < 0) { /* Although a pair could be freed later, this condition is * very unusual and deserves analysis. Flag an error and * leave the topmost part unconfigured. */ printk(BIOS_ERR, "Not enough NB MMIO routing registers\n"); continue; } data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), np_top + 1); data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), limit); data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg), ctrl); continue; } /* If still here, adjust only the base or limit */ if (base <= np_bot) data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(i), np_bot - 1); else data_fabric_broadcast_write32(0, NB_MMIO_BASE(i), np_top + 1); } reg = data_fabric_find_unused_mmio_reg(); if (reg < 0) { printk(BIOS_ERR, "cannot configure region as NP\n"); return; } data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), np_bot); data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), np_top); data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg), (IOMS0_FABRIC_ID << DF_MMIO_DST_FABRIC_ID_SHIFT) | DF_MMIO_NP | DF_MMIO_WE | DF_MMIO_RE); data_fabric_print_mmio_conf(); } static const char *data_fabric_acpi_name(const struct device *dev) { switch (dev->device) { case PCI_DEVICE_ID_AMD_FAM17H_MODEL60H_DF0: case PCI_DEVICE_ID_AMD_FAM19H_MODEL51H_DF0: return "DFD0"; case PCI_DEVICE_ID_AMD_FAM17H_MODEL60H_DF1: case PCI_DEVICE_ID_AMD_FAM19H_MODEL51H_DF1: return "DFD1"; case PCI_DEVICE_ID_AMD_FAM17H_MODEL60H_DF2: case PCI_DEVICE_ID_AMD_FAM19H_MODEL51H_DF2: return "DFD2"; case PCI_DEVICE_ID_AMD_FAM17H_MODEL60H_DF3: case PCI_DEVICE_ID_AMD_FAM19H_MODEL51H_DF3: return "DFD3"; case PCI_DEVICE_ID_AMD_FAM17H_MODEL60H_DF4: case PCI_DEVICE_ID_AMD_FAM19H_MODEL51H_DF4: return "DFD4"; case PCI_DEVICE_ID_AMD_FAM17H_MODEL60H_DF5: case PCI_DEVICE_ID_AMD_FAM19H_MODEL51H_DF5: return "DFD5"; case PCI_DEVICE_ID_AMD_FAM17H_MODEL60H_DF6: case PCI_DEVICE_ID_AMD_FAM19H_MODEL51H_DF6: return "DFD6"; case PCI_DEVICE_ID_AMD_FAM17H_MODEL60H_DF7: case PCI_DEVICE_ID_AMD_FAM19H_MODEL51H_DF7: return "DFD7"; default: printk(BIOS_ERR, "%s: Unhandled device id 0x%x\n", __func__, dev->device); } return NULL; } static struct device_operations data_fabric_ops = { .read_resources = noop_read_resources, .set_resources = noop_set_resources, .acpi_name = data_fabric_acpi_name, .acpi_fill_ssdt = acpi_device_write_pci_dev, }; static const unsigned short pci_device_ids[] = { /* Renoir DF devices */ PCI_DEVICE_ID_AMD_FAM17H_MODEL60H_DF0, PCI_DEVICE_ID_AMD_FAM17H_MODEL60H_DF1, PCI_DEVICE_ID_AMD_FAM17H_MODEL60H_DF2, PCI_DEVICE_ID_AMD_FAM17H_MODEL60H_DF3, PCI_DEVICE_ID_AMD_FAM17H_MODEL60H_DF4, PCI_DEVICE_ID_AMD_FAM17H_MODEL60H_DF5, PCI_DEVICE_ID_AMD_FAM17H_MODEL60H_DF6, PCI_DEVICE_ID_AMD_FAM17H_MODEL60H_DF7, /* Cezanne DF devices */ PCI_DEVICE_ID_AMD_FAM19H_MODEL51H_DF0, PCI_DEVICE_ID_AMD_FAM19H_MODEL51H_DF1, PCI_DEVICE_ID_AMD_FAM19H_MODEL51H_DF2, PCI_DEVICE_ID_AMD_FAM19H_MODEL51H_DF3, PCI_DEVICE_ID_AMD_FAM19H_MODEL51H_DF4, PCI_DEVICE_ID_AMD_FAM19H_MODEL51H_DF5, PCI_DEVICE_ID_AMD_FAM19H_MODEL51H_DF6, PCI_DEVICE_ID_AMD_FAM19H_MODEL51H_DF7, 0 }; static const struct pci_driver data_fabric_driver __pci_driver = { .ops = &data_fabric_ops, .vendor = PCI_VENDOR_ID_AMD, .devices = pci_device_ids, };