/* * This file is part of the coreboot project. * * Copyright 2014 Google Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "antirollback.h" /* The max hash size to expect is for SHA512. */ #define VBOOT_MAX_HASH_SIZE VB2_SHA512_DIGEST_SIZE #define TODO_BLOCK_SIZE 1024 static int is_slot_a(struct vb2_context *ctx) { return !(ctx->flags & VB2_CONTEXT_FW_SLOT_B); } /* exports */ void vb2ex_printf(const char *func, const char *fmt, ...) { va_list args; if (func) printk(BIOS_INFO, "VB2:%s() ", func); va_start(args, fmt); vprintk(BIOS_INFO, fmt, args); va_end(args); return; } int vb2ex_read_resource(struct vb2_context *ctx, enum vb2_resource_index index, uint32_t offset, void *buf, uint32_t size) { struct region_device rdev; const char *name; switch (index) { case VB2_RES_GBB: name = "GBB"; break; case VB2_RES_FW_VBLOCK: if (is_slot_a(ctx)) name = "VBLOCK_A"; else name = "VBLOCK_B"; break; default: return VB2_ERROR_EX_READ_RESOURCE_INDEX; } if (vboot_named_region_device(name, &rdev)) return VB2_ERROR_EX_READ_RESOURCE_SIZE; if (rdev_readat(&rdev, buf, offset, size) != size) return VB2_ERROR_EX_READ_RESOURCE_SIZE; return VB2_SUCCESS; } /* No-op stubs that can be overridden by SoCs with hardware crypto support. */ __weak int vb2ex_hwcrypto_digest_init(enum vb2_hash_algorithm hash_alg, uint32_t data_size) { return VB2_ERROR_EX_HWCRYPTO_UNSUPPORTED; } __weak int vb2ex_hwcrypto_digest_extend(const uint8_t *buf, uint32_t size) { BUG(); /* Should never get called if init() returned an error. */ return VB2_ERROR_UNKNOWN; } __weak int vb2ex_hwcrypto_digest_finalize(uint8_t *digest, uint32_t digest_size) { BUG(); /* Should never get called if init() returned an error. */ return VB2_ERROR_UNKNOWN; } static int handle_digest_result(void *slot_hash, size_t slot_hash_sz) { int is_resume; /* * Chrome EC is the only support for vboot_save_hash() & * vboot_retrieve_hash(), if Chrome EC is not enabled then return. */ if (!IS_ENABLED(CONFIG_EC_GOOGLE_CHROMEEC)) return 0; /* * Nothing to do since resuming on the platform doesn't require * vboot verification again. */ if (!IS_ENABLED(CONFIG_RESUME_PATH_SAME_AS_BOOT)) return 0; /* * Assume that if vboot doesn't start in bootblock verified * RW memory init code is not employed. i.e. memory init code * lives in RO CBFS. */ if (!IS_ENABLED(CONFIG_VBOOT_STARTS_IN_BOOTBLOCK)) return 0; is_resume = vboot_platform_is_resuming(); if (is_resume > 0) { uint8_t saved_hash[VBOOT_MAX_HASH_SIZE]; const size_t saved_hash_sz = sizeof(saved_hash); assert(slot_hash_sz == saved_hash_sz); printk(BIOS_DEBUG, "Platform is resuming.\n"); if (vboot_retrieve_hash(saved_hash, saved_hash_sz)) { printk(BIOS_ERR, "Couldn't retrieve saved hash.\n"); return -1; } if (memcmp(saved_hash, slot_hash, slot_hash_sz)) { printk(BIOS_ERR, "Hash mismatch on resume.\n"); return -1; } } else if (is_resume < 0) printk(BIOS_ERR, "Unable to determine if platform resuming.\n"); printk(BIOS_DEBUG, "Saving vboot hash.\n"); /* Always save the hash for the current boot. */ if (vboot_save_hash(slot_hash, slot_hash_sz)) { printk(BIOS_ERR, "Error saving vboot hash.\n"); /* Though this is an error don't report it up since it could * lead to a reboot loop. The consequence of this is that * we will most likely fail resuming because of EC issues or * the hash digest not matching. */ return 0; } return 0; } static int hash_body(struct vb2_context *ctx, struct region_device *fw_main) { uint64_t load_ts; uint32_t expected_size; uint8_t block[TODO_BLOCK_SIZE]; uint8_t hash_digest[VBOOT_MAX_HASH_SIZE]; const size_t hash_digest_sz = sizeof(hash_digest); size_t block_size = sizeof(block); size_t offset; int rv; /* Clear the full digest so that any hash digests less than the * max have trailing zeros. */ memset(hash_digest, 0, hash_digest_sz); /* * Since loading the firmware and calculating its hash is intertwined, * we use this little trick to measure them separately and pretend it * was first loaded and then hashed in one piece with the timestamps. * (This split won't make sense with memory-mapped media like on x86.) */ load_ts = timestamp_get(); timestamp_add(TS_START_HASH_BODY, load_ts); expected_size = region_device_sz(fw_main); offset = 0; /* Start the body hash */ rv = vb2api_init_hash(ctx, VB2_HASH_TAG_FW_BODY, &expected_size); if (rv) return rv; /* * Honor vboot's RW slot size. The expected size is pulled out of * the preamble and obtained through vb2api_init_hash() above. By * creating sub region the RW slot portion of the boot media is * limited. */ if (rdev_chain(fw_main, fw_main, 0, expected_size)) { printk(BIOS_ERR, "Unable to restrict CBFS size.\n"); return VB2_ERROR_UNKNOWN; } /* Extend over the body */ while (expected_size) { uint64_t temp_ts; if (block_size > expected_size) block_size = expected_size; temp_ts = timestamp_get(); if (rdev_readat(fw_main, block, offset, block_size) < 0) return VB2_ERROR_UNKNOWN; load_ts += timestamp_get() - temp_ts; rv = vb2api_extend_hash(ctx, block, block_size); if (rv) return rv; expected_size -= block_size; offset += block_size; } timestamp_add(TS_DONE_LOADING, load_ts); timestamp_add_now(TS_DONE_HASHING); /* Check the result (with RSA signature verification) */ rv = vb2api_check_hash_get_digest(ctx, hash_digest, hash_digest_sz); if (rv) return rv; timestamp_add_now(TS_END_HASH_BODY); if (handle_digest_result(hash_digest, hash_digest_sz)) return VB2_ERROR_UNKNOWN; return VB2_SUCCESS; } static int locate_firmware(struct vb2_context *ctx, struct region_device *fw_main) { const char *name; if (is_slot_a(ctx)) name = "FW_MAIN_A"; else name = "FW_MAIN_B"; return vboot_named_region_device(name, fw_main); } /** * Save non-volatile and/or secure data if needed. */ static void save_if_needed(struct vb2_context *ctx) { if (ctx->flags & VB2_CONTEXT_NVDATA_CHANGED) { printk(BIOS_INFO, "Saving nvdata\n"); save_vbnv(ctx->nvdata); ctx->flags &= ~VB2_CONTEXT_NVDATA_CHANGED; } if (ctx->flags & VB2_CONTEXT_SECDATA_CHANGED) { printk(BIOS_INFO, "Saving secdata\n"); antirollback_write_space_firmware(ctx); ctx->flags &= ~VB2_CONTEXT_SECDATA_CHANGED; } } static uint32_t extend_pcrs(struct vb2_context *ctx) { return vboot_extend_pcr(ctx, 0, BOOT_MODE_PCR) || vboot_extend_pcr(ctx, 1, HWID_DIGEST_PCR); } /** * Verify and select the firmware in the RW image * * TODO: Avoid loading a stage twice (once in hash_body & again in load_stage). * when per-stage verification is ready. */ void verstage_main(void) { struct vb2_context ctx; struct region_device fw_main; int rv; timestamp_add_now(TS_START_VBOOT); /* Set up context and work buffer */ vb2_init_work_context(&ctx); /* Initialize and read nvdata from non-volatile storage. */ vbnv_init(ctx.nvdata); /* Set S3 resume flag if vboot should behave differently when selecting * which slot to boot. This is only relevant to vboot if the platform * does verification of memory init and thus must ensure it resumes with * the same slot that it booted from. */ if (IS_ENABLED(CONFIG_RESUME_PATH_SAME_AS_BOOT) && vboot_platform_is_resuming()) ctx.flags |= VB2_CONTEXT_S3_RESUME; /* Read secdata from TPM. Initialize TPM if secdata not found. We don't * check the return value here because vb2api_fw_phase1 will catch * invalid secdata and tell us what to do (=reboot). */ timestamp_add_now(TS_START_TPMINIT); antirollback_read_space_firmware(&ctx); timestamp_add_now(TS_END_TPMINIT); /* Enable measured boot mode */ if (IS_ENABLED(CONFIG_VBOOT_MEASURED_BOOT) && !(ctx.flags & VB2_CONTEXT_S3_RESUME)) { if (vboot_init_crtm() != VB2_SUCCESS) die("Initializing measured boot mode failed!"); } if (IS_ENABLED(CONFIG_VBOOT_PHYSICAL_DEV_SWITCH) && get_developer_mode_switch()) ctx.flags |= VB2_CONTEXT_FORCE_DEVELOPER_MODE; if (get_recovery_mode_switch()) { ctx.flags |= VB2_CONTEXT_FORCE_RECOVERY_MODE; if (IS_ENABLED(CONFIG_VBOOT_DISABLE_DEV_ON_RECOVERY)) ctx.flags |= VB2_CONTEXT_DISABLE_DEVELOPER_MODE; } if (IS_ENABLED(CONFIG_VBOOT_WIPEOUT_SUPPORTED) && get_wipeout_mode_switch()) ctx.flags |= VB2_CONTEXT_FORCE_WIPEOUT_MODE; if (IS_ENABLED(CONFIG_VBOOT_LID_SWITCH) && !get_lid_switch()) ctx.flags |= VB2_CONTEXT_NOFAIL_BOOT; /* Do early init (set up secdata and NVRAM, load GBB) */ printk(BIOS_INFO, "Phase 1\n"); rv = vb2api_fw_phase1(&ctx); if (rv) { /* * If vb2api_fw_phase1 fails, check for return value. * If it is set to VB2_ERROR_API_PHASE1_RECOVERY, then continue * into recovery mode. * For any other error code, save context if needed and reboot. */ if (rv == VB2_ERROR_API_PHASE1_RECOVERY) { printk(BIOS_INFO, "Recovery requested (%x)\n", rv); save_if_needed(&ctx); extend_pcrs(&ctx); /* ignore failures */ timestamp_add_now(TS_END_VBOOT); return; } printk(BIOS_INFO, "Reboot requested (%x)\n", rv); save_if_needed(&ctx); vboot_reboot(); } /* Determine which firmware slot to boot (based on NVRAM) */ printk(BIOS_INFO, "Phase 2\n"); rv = vb2api_fw_phase2(&ctx); if (rv) { printk(BIOS_INFO, "Reboot requested (%x)\n", rv); save_if_needed(&ctx); vboot_reboot(); } /* Try that slot (verify its keyblock and preamble) */ printk(BIOS_INFO, "Phase 3\n"); timestamp_add_now(TS_START_VERIFY_SLOT); rv = vb2api_fw_phase3(&ctx); timestamp_add_now(TS_END_VERIFY_SLOT); if (rv) { printk(BIOS_INFO, "Reboot requested (%x)\n", rv); save_if_needed(&ctx); vboot_reboot(); } printk(BIOS_INFO, "Phase 4\n"); rv = locate_firmware(&ctx, &fw_main); if (rv) die("Failed to read FMAP to locate firmware"); rv = hash_body(&ctx, &fw_main); save_if_needed(&ctx); if (rv) { printk(BIOS_INFO, "Reboot requested (%x)\n", rv); vboot_reboot(); } /* Only extend PCRs once on boot. */ if (!(ctx.flags & VB2_CONTEXT_S3_RESUME)) { timestamp_add_now(TS_START_TPMPCR); rv = extend_pcrs(&ctx); if (rv) { printk(BIOS_WARNING, "Failed to extend TPM PCRs (%#x)\n", rv); vb2api_fail(&ctx, VB2_RECOVERY_RO_TPM_U_ERROR, rv); save_if_needed(&ctx); vboot_reboot(); } timestamp_add_now(TS_END_TPMPCR); } /* Lock TPM */ timestamp_add_now(TS_START_TPMLOCK); rv = antirollback_lock_space_firmware(); if (rv) { printk(BIOS_INFO, "Failed to lock TPM (%x)\n", rv); vb2api_fail(&ctx, VB2_RECOVERY_RO_TPM_L_ERROR, 0); save_if_needed(&ctx); vboot_reboot(); } timestamp_add_now(TS_END_TPMLOCK); /* Lock rec hash space if available. */ if (IS_ENABLED(CONFIG_VBOOT_HAS_REC_HASH_SPACE)) { rv = antirollback_lock_space_rec_hash(); if (rv) { printk(BIOS_INFO, "Failed to lock rec hash space(%x)\n", rv); vb2api_fail(&ctx, VB2_RECOVERY_RO_TPM_REC_HASH_L_ERROR, 0); save_if_needed(&ctx); vboot_reboot(); } } printk(BIOS_INFO, "Slot %c is selected\n", is_slot_a(&ctx) ? 'A' : 'B'); vb2_set_selected_region(region_device_region(&fw_main)); timestamp_add_now(TS_END_VBOOT); }