/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "antirollback.h" /* The max hash size to expect is for SHA512. */ #define VBOOT_MAX_HASH_SIZE VB2_SHA512_DIGEST_SIZE /* exports */ vb2_error_t vb2ex_read_resource(struct vb2_context *ctx, enum vb2_resource_index index, uint32_t offset, void *buf, uint32_t size) { struct region_device rdev; const char *name; switch (index) { case VB2_RES_GBB: name = "GBB"; break; case VB2_RES_FW_VBLOCK: if (vboot_is_firmware_slot_a(ctx)) name = "VBLOCK_A"; else name = "VBLOCK_B"; break; default: return VB2_ERROR_EX_READ_RESOURCE_INDEX; } if (fmap_locate_area_as_rdev(name, &rdev)) return VB2_ERROR_EX_READ_RESOURCE_SIZE; if (rdev_readat(&rdev, buf, offset, size) != size) return VB2_ERROR_EX_READ_RESOURCE_SIZE; return VB2_SUCCESS; } static vb2_error_t handle_digest_result(void *slot_hash, size_t slot_hash_sz) { int is_resume; /* * Chrome EC is the only support for vboot_save_hash() & * vboot_retrieve_hash(), if Chrome EC is not enabled then return. */ if (!CONFIG(EC_GOOGLE_CHROMEEC)) return VB2_SUCCESS; /* * Nothing to do since resuming on the platform doesn't require * vboot verification again. */ if (!CONFIG(RESUME_PATH_SAME_AS_BOOT)) return VB2_SUCCESS; /* * Assume that if vboot doesn't start in bootblock verified * RW memory init code is not employed. i.e. memory init code * lives in RO CBFS. */ if (!CONFIG(VBOOT_STARTS_IN_BOOTBLOCK)) return VB2_SUCCESS; is_resume = platform_is_resuming(); if (is_resume > 0) { uint8_t saved_hash[VBOOT_MAX_HASH_SIZE]; const size_t saved_hash_sz = sizeof(saved_hash); assert(slot_hash_sz <= saved_hash_sz); printk(BIOS_DEBUG, "Platform is resuming.\n"); if (vboot_retrieve_hash(saved_hash, saved_hash_sz)) { printk(BIOS_ERR, "Couldn't retrieve saved hash.\n"); return VB2_ERROR_UNKNOWN; } if (memcmp(saved_hash, slot_hash, slot_hash_sz)) { printk(BIOS_ERR, "Hash mismatch on resume.\n"); return VB2_ERROR_UNKNOWN; } } else if (is_resume < 0) printk(BIOS_ERR, "Unable to determine if platform resuming.\n"); printk(BIOS_DEBUG, "Saving vboot hash.\n"); /* Always save the hash for the current boot. */ if (vboot_save_hash(slot_hash, slot_hash_sz)) { printk(BIOS_ERR, "Error saving vboot hash.\n"); /* Though this is an error don't report it up since it could * lead to a reboot loop. The consequence of this is that * we will most likely fail resuming because of EC issues or * the hash digest not matching. */ return VB2_SUCCESS; } return VB2_SUCCESS; } static vb2_error_t hash_body(struct vb2_context *ctx, struct region_device *fw_body) { uint64_t load_ts; uint32_t remaining; uint8_t block[CONFIG_VBOOT_HASH_BLOCK_SIZE]; uint8_t hash_digest[VBOOT_MAX_HASH_SIZE]; const size_t hash_digest_sz = sizeof(hash_digest); size_t block_size = sizeof(block); size_t offset; vb2_error_t rc; /* Clear the full digest so that any hash digests less than the * max have trailing zeros. */ memset(hash_digest, 0, hash_digest_sz); /* * Since loading the firmware and calculating its hash is intertwined, * we use this little trick to measure them separately and pretend it * was first loaded and then hashed in one piece with the timestamps. * (This split won't make sense with memory-mapped media like on x86.) */ load_ts = timestamp_get(); timestamp_add(TS_HASH_BODY_START, load_ts); remaining = region_device_sz(fw_body); offset = 0; /* Start the body hash */ rc = vb2api_init_hash(ctx, VB2_HASH_TAG_FW_BODY); if (rc) return rc; /* Extend over the body */ while (remaining) { uint64_t temp_ts; if (block_size > remaining) block_size = remaining; temp_ts = timestamp_get(); if (rdev_readat(fw_body, block, offset, block_size) < 0) return VB2_ERROR_UNKNOWN; load_ts += timestamp_get() - temp_ts; rc = vb2api_extend_hash(ctx, block, block_size); if (rc) return rc; remaining -= block_size; offset += block_size; } timestamp_add(TS_LOADING_END, load_ts); timestamp_add_now(TS_HASHING_END); /* Check the result (with RSA signature verification) */ rc = vb2api_check_hash_get_digest(ctx, hash_digest, hash_digest_sz); if (rc) return rc; timestamp_add_now(TS_HASH_BODY_END); return handle_digest_result(hash_digest, hash_digest_sz); } static vb2_error_t extend_pcrs(struct vb2_context *ctx) { vb2_error_t rv; rv = vboot_extend_pcr(ctx, CONFIG_PCR_BOOT_MODE, BOOT_MODE_PCR); if (rv) return rv; return vboot_extend_pcr(ctx, CONFIG_PCR_HWID, HWID_DIGEST_PCR); } #define EC_EFS_BOOT_MODE_VERIFIED_RW 0x00 #define EC_EFS_BOOT_MODE_UNTRUSTED_RO 0x01 #define EC_EFS_BOOT_MODE_TRUSTED_RO 0x02 static const char *get_boot_mode_string(uint8_t boot_mode) { if (boot_mode == EC_EFS_BOOT_MODE_TRUSTED_RO) return "TRUSTED_RO"; else if (boot_mode == EC_EFS_BOOT_MODE_UNTRUSTED_RO) return "UNTRUSTED_RO"; else if (boot_mode == EC_EFS_BOOT_MODE_VERIFIED_RW) return "VERIFIED_RW"; else return "UNDEFINED"; } static void check_boot_mode(struct vb2_context *ctx) { uint8_t boot_mode; int rc; rc = tlcl_cr50_get_boot_mode(&boot_mode); switch (rc) { case TPM_E_NO_SUCH_COMMAND: printk(BIOS_WARNING, "GSC does not support GET_BOOT_MODE.\n"); /* Proceed to legacy boot model. */ return; case TPM_SUCCESS: break; default: printk(BIOS_ERR, "Communication error in getting GSC boot mode.\n"); vb2api_fail(ctx, VB2_RECOVERY_GSC_BOOT_MODE, rc); return; } printk(BIOS_INFO, "GSC says boot_mode is %s(0x%02x).\n", get_boot_mode_string(boot_mode), boot_mode); if (boot_mode == EC_EFS_BOOT_MODE_UNTRUSTED_RO) ctx->flags |= VB2_CONTEXT_NO_BOOT; else if (boot_mode == EC_EFS_BOOT_MODE_TRUSTED_RO) ctx->flags |= VB2_CONTEXT_EC_TRUSTED; } /* Verify and select the firmware in the RW image */ void verstage_main(void) { struct vb2_context *ctx; vb2_error_t rv; timestamp_add_now(TS_VBOOT_START); /* Lockdown SPI flash controller if required */ if (CONFIG(BOOTMEDIA_LOCK_IN_VERSTAGE)) boot_device_security_lockdown(); /* Set up context and work buffer */ ctx = vboot_get_context(); /* Initialize and read nvdata from non-volatile storage. */ vbnv_init(); /* Set S3 resume flag if vboot should behave differently when selecting * which slot to boot. This is only relevant to vboot if the platform * does verification of memory init and thus must ensure it resumes with * the same slot that it booted from. */ if (CONFIG(RESUME_PATH_SAME_AS_BOOT) && platform_is_resuming()) ctx->flags |= VB2_CONTEXT_S3_RESUME; if (!CONFIG(VBOOT_SLOTS_RW_AB)) ctx->flags |= VB2_CONTEXT_SLOT_A_ONLY; /* Read secdata from TPM. Initialize TPM if secdata not found. We don't * check the return value here because vb2api_fw_phase1 will catch * invalid secdata and tell us what to do (=reboot). */ timestamp_add_now(TS_TPMINIT_START); if (vboot_setup_tpm(ctx) == TPM_SUCCESS) { antirollback_read_space_firmware(ctx); antirollback_read_space_kernel(ctx); } timestamp_add_now(TS_TPMINIT_END); if (get_recovery_mode_switch()) { ctx->flags |= VB2_CONTEXT_FORCE_RECOVERY_MODE; if (CONFIG(VBOOT_DISABLE_DEV_ON_RECOVERY)) ctx->flags |= VB2_CONTEXT_DISABLE_DEVELOPER_MODE; } if (CONFIG(VBOOT_WIPEOUT_SUPPORTED) && get_wipeout_mode_switch()) ctx->flags |= VB2_CONTEXT_FORCE_WIPEOUT_MODE; if (CONFIG(VBOOT_LID_SWITCH) && !get_lid_switch()) ctx->flags |= VB2_CONTEXT_NOFAIL_BOOT; /* Mainboard/SoC always initializes display. */ if (!CONFIG(VBOOT_MUST_REQUEST_DISPLAY) || CONFIG(VBOOT_ALWAYS_ENABLE_DISPLAY)) ctx->flags |= VB2_CONTEXT_DISPLAY_INIT; /* * Get boot mode from GSC. This allows us to refuse to boot OS * (with VB2_CONTEXT_NO_BOOT) or to switch to developer mode (with * !VB2_CONTEXT_EC_TRUSTED). * * If there is an communication error, a recovery reason will be set and * vb2api_fw_phase1 will route us to recovery mode. */ if (CONFIG(TPM_GOOGLE)) check_boot_mode(ctx); if (get_ec_is_trusted()) ctx->flags |= VB2_CONTEXT_EC_TRUSTED; /* Do early init (set up secdata and NVRAM, load GBB) */ printk(BIOS_INFO, "Phase 1\n"); rv = vb2api_fw_phase1(ctx); if (rv) { /* * If vb2api_fw_phase1 fails, check for return value. * If it is set to VB2_ERROR_API_PHASE1_RECOVERY, then continue * into recovery mode. * For any other error code, save context if needed and reboot. */ if (rv == VB2_ERROR_API_PHASE1_RECOVERY) { printk(BIOS_INFO, "Recovery requested (%x)\n", rv); vboot_save_data(ctx); extend_pcrs(ctx); /* ignore failures */ goto verstage_main_exit; } vboot_save_and_reboot(ctx, rv); } /* Determine which firmware slot to boot (based on NVRAM) */ printk(BIOS_INFO, "Phase 2\n"); rv = vb2api_fw_phase2(ctx); if (rv) vboot_save_and_reboot(ctx, rv); /* Try that slot (verify its keyblock and preamble) */ printk(BIOS_INFO, "Phase 3\n"); timestamp_add_now(TS_VERIFY_SLOT_START); rv = vb2api_fw_phase3(ctx); timestamp_add_now(TS_VERIFY_SLOT_END); if (rv) vboot_save_and_reboot(ctx, rv); printk(BIOS_INFO, "Phase 4\n"); if (CONFIG(VBOOT_CBFS_INTEGRATION)) { struct vb2_hash *metadata_hash; rv = vb2api_get_metadata_hash(ctx, &metadata_hash); if (rv == VB2_SUCCESS) rv = handle_digest_result(metadata_hash->raw, vb2_digest_size(metadata_hash->algo)); } else { struct region_device fw_body; if (vboot_locate_firmware(ctx, &fw_body)) die_with_post_code(POSTCODE_INVALID_ROM, "Failed to read FMAP to locate firmware"); rv = hash_body(ctx, &fw_body); } if (rv) vboot_save_and_reboot(ctx, rv); vboot_save_data(ctx); /* Only extend PCRs once on boot. */ if (!(ctx->flags & VB2_CONTEXT_S3_RESUME)) { timestamp_add_now(TS_TPMPCR_START); rv = extend_pcrs(ctx); if (rv) { printk(BIOS_WARNING, "Failed to extend TPM PCRs (%#x)\n", rv); vboot_fail_and_reboot(ctx, VB2_RECOVERY_RO_TPM_U_ERROR, rv); } timestamp_add_now(TS_TPMPCR_END); } /* Lock TPM */ timestamp_add_now(TS_TPMLOCK_START); rv = antirollback_lock_space_firmware(); if (rv) { printk(BIOS_INFO, "Failed to lock TPM (%x)\n", rv); vboot_fail_and_reboot(ctx, VB2_RECOVERY_RO_TPM_L_ERROR, 0); } timestamp_add_now(TS_TPMLOCK_END); /* Lock rec hash space if available. */ if (CONFIG(VBOOT_HAS_REC_HASH_SPACE)) { rv = antirollback_lock_space_mrc_hash(MRC_REC_HASH_NV_INDEX); if (rv) { printk(BIOS_INFO, "Failed to lock rec hash space(%x)\n", rv); vboot_fail_and_reboot(ctx, VB2_RECOVERY_RO_TPM_REC_HASH_L_ERROR, rv); } } printk(BIOS_INFO, "Slot %c is selected\n", vboot_is_firmware_slot_a(ctx) ? 'A' : 'B'); verstage_main_exit: timestamp_add_now(TS_VBOOT_END); }