/* * This file is part of the coreboot project. * * Copyright (C) 2011-2012 Alexandru Gagniuc * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "early_vx900.h" #include "raminit.h" #include #include #include #include #include #include #include /** * @file raminit_ddr3.c * * \brief DDR3 initialization for VIA VX900 chipset * * Rather than explain the DDR3 init algorithm, it is better to focus on what * works and what doesn't. Familiarity with the DDR3 spec does not hurt. * * 1 DIMMs and 2 DIMMs with one rank each works. * 1 rank DIMM with 2 rank DIMM works, but the odd ranks are disabled. * (2) 2-rank DIMMs will not work. * * It is not yet clear if odd ranks do not work because of faulty timing * calibration, or a misconfiguration of the MCU. I have seen this with DIMMS * which mirror pins on the odd rank. That could also be the issue. * * The capture window is not calibrated, but preset. Whether that preset is * universal or frequency dependent, and whether it is board-specific or not is * not yet clear. @see vx900_dram_calibrate_receive_delays(). * * 4GBit and 8GBit modules may not work. This is untested. Modules with 11 * column address bits are not tested. @see vx900_dram_map_row_col_bank() * * Everything else should be in a more or less usable state. FIXME s are placed * all over as a reminder that either something really needs fixing, or as a * reminder to double-check. */ /* Map BA0 <-> A17, BA1 <-> A18 */ /* Map BA2 <-> A19, RA0/RA1 must not overlap BA[0:2] */ #define VX900_MRS_MA_MAP 0x4b33 /* MA Pin Mapping for MRS commands */ #define VX900_CALIB_MA_MAP 0x5911 /* MA Pin mapping for calibrations */ /* * Registers 0x78 -> 0x7f contain the calibration settings for DRAM IO timing * The dataset in these registers is selected from 0x70. * Once the correct dataset is selected the delays can be altered. * delay_type refers to TxDQS, TxDQ, RxDQS, or RxCR * bound refers to either manual, average, upper bound, or lower bound */ #define CALIB_TxDQS 0 #define CALIB_TxDQ 1 #define CALIB_RxDQS 2 #define CALIB_RxDQ_CR 3 #define CALIB_AVERAGE 0 #define CALIB_LOWER 1 #define CALIB_UPPER 2 #define CALIB_MANUAL 4 /* We want this & 3 to overflow to 0 */ static void vx900_delay_calib_mode_select(u8 delay_type, u8 bound) { /* Which calibration setting */ u8 reg8 = (delay_type & 0x03) << 2; /* Upper, lower, average, or manual setting */ reg8 |= (bound & 0x03); pci_write_config8(MCU, 0x70, reg8); } /* * The vendor BIOS does something similar to vx900_delay_calib_mode_select(), * then reads or write a byte, and repeats the process for all 8 bytes. This is * annoyingly inefficient, and we can achieve the same result in a much more * elegant manner. */ static void vx900_read_0x78_0x7f(timing_dly dly) { *((u32 *) (&(dly[0]))) = pci_read_config32(MCU, 0x78); *((u32 *) (&(dly[4]))) = pci_read_config32(MCU, 0x7c); } static void vx900_write_0x78_0x7f(const timing_dly dly) { pci_write_config32(MCU, 0x78, *((u32 *) (&(dly[0])))); pci_write_config32(MCU, 0x7c, *((u32 *) (&(dly[4])))); } static void vx900_read_delay_range(delay_range * d_range, u8 mode) { vx900_delay_calib_mode_select(mode, CALIB_LOWER); vx900_read_0x78_0x7f(d_range->low); vx900_delay_calib_mode_select(mode, CALIB_AVERAGE); vx900_read_0x78_0x7f(d_range->avg); vx900_delay_calib_mode_select(mode, CALIB_UPPER); vx900_read_0x78_0x7f(d_range->high); } static void dump_delay(const timing_dly dly) { u8 i; for (i = 0; i < 8; i++) { printram(" %.2x", dly[i]); } printram("\n"); } static void dump_delay_range(const delay_range d_range) { printram("Lower limit: "); dump_delay(d_range.low); printram("Average: "); dump_delay(d_range.avg); printram("Upper limit: "); dump_delay(d_range.high); } /* * These are some "safe" values that can be used for memory initialization. * Some will stay untouched, and others will be overwritten later on */ static pci_reg8 mcu_init_config[] = { {0x40, 0x01}, /* Virtual rank 0 ending address = 64M - 1 */ {0x41, 0x00}, {0x42, 0x00}, {0x43, 0x00}, /* Virtual Ranks ending */ {0x48, 0x00}, /* Virtual rank 0 starting address = 0 */ {0x49, 0x00}, {0x4a, 0x00}, {0x4b, 0x00}, /* Virtual Ranks beginning */ {0x50, 0xd8}, /* Set ranks 0-3 to 11 col bits, 16 row bits */ /* Disable all virtual ranks */ {0x54, 0x00}, {0x55, 0x00}, {0x56, 0x00}, {0x57, 0x00}, /* Disable rank interleaving in ranks 0-3 */ {0x58, 0x00}, {0x59, 0x00}, {0x5a, 0x00}, {0x5b, 0x00}, {0x6c, 0xA0}, /* Memory type: DDR3, VDIMM: 1.5V, 64-bit DRAM */ {0xc4, 0x80}, /* Enable 8 memory banks */ {0xc6, 0x80}, /* Minimum latency from self-refresh. Bit [7] must be 1 */ /* FIXME: do it here or in Final config? */ {0xc8, 0x80}, /* Enable automatic triggering of short ZQ calibration */ {0x99, 0xf0}, /* Power Management and Bypass Reorder Queue */ /* Enable differential DQS; MODT assertion values suggested in DS */ {0x9e, 0xa1}, {0x9f, 0x51}, /* DQ/DQM Duty Control - Do not put any extra delays */ {0xe9, 0x00}, {0xea, 0x00}, {0xeb, 0x00}, {0xec, 0x00}, {0xed, 0x00}, {0xee, 0x00}, {0xef, 0x00}, {0xfc, 0x00}, {0xfd, 0x00}, {0xfe, 0x00}, {0xff, 0x00}, /* The following parameters we may or may not change */ {0x61, 0x2e}, /* DRAMC Pipeline Control */ {0x77, 0x10}, /* MDQS Output Control */ /* The following are parameters we'll most likely never change again */ {0x60, 0xf4}, /* DRAM Pipeline Turn-Around Setting */ {0x65, 0x49}, /* DRAM Arbitration Bandwidth Timer - I */ {0x66, 0x80}, /* DRAM Queue / Arbitration */ {0x69, 0xc6}, /* Bank Control: 8 banks, high priority refresh */ {0x6a, 0xfc}, /* DRAMC Request Reorder Control */ {0x6e, 0x38}, /* Burst length: 8, burst-chop: enable */ {0x73, 0x04}, /* Close All Pages Threshold */ /* The following need to be dynamically asserted */ /* See: check_special_registers.c */ {0x74, 0xa0}, /* Yes, same 0x74; add one more T */ {0x76, 0x60}, /* Write Data Phase Control */ }; /* * This table keeps the driving strength control setting that we can safely use * during initialization. This settings come in part from SerialICE, and in part * from code provided by VIA. */ static pci_reg8 mcu_drv_ctrl_config[] = { {0xd3, 0x03}, /* Enable auto-compensation circuit for ODT strength */ {0xd4, 0x80}, /* Set internal ODT to dynamically turn on or off */ {0xd6, 0x20}, /* Enable strong driving for MA and DRAM commands */ {0xd0, 0x88}, /* (ODT) Strength ?has effect? */ {0xe0, 0x88}, /* DRAM Driving - Group DQS (MDQS) */ {0xe1, 0x00}, /* Disable offset mode for driving strength control */ {0xe2, 0x88}, /* DRAM Driving - Group DQ (MD, MDQM) */ {0xe4, 0xcc}, /* DRAM Driving - Group CSA (MCS, MCKE, MODT) */ {0xe8, 0x88}, /* DRAM Driving - Group MA (MA, MBA, MSRAS, MSCAS, MSWE) */ {0xe6, 0xff}, /* DRAM Driving - Group DCLK0 (DCLK[2:0] for DIMM0) */ {0xe7, 0xff}, /* DRAM Driving - Group DCLK1 (DCLK[5:3] for DIMM1) */ {0xe4, 0xcc}, /* DRAM Driving - Group CSA (MCS, MCKE, MODT) */ {0x91, 0x08}, /* MCLKO Output Phase Delay - I */ {0x92, 0x08}, /* MCLKO Output Phase Delay - II */ {0x93, 0x16}, /* CS/CKE Output Phase Delay */ {0x95, 0x16}, /* SCMD/MA Output Phase Delay */ {0x9b, 0x3f}, /* Memory Clock Output Enable */ }; static void vx900_dram_set_ma_pin_map(u16 map) { pci_write_config16(MCU, 0x52, map); } /* * FIXME: This function is a complete waste of space. All we really need is a * MA MAP table based on either row address bits or column address bits. * The problem is, I do not know if this mapping is applied during the column * access or during the row access. At least the religiously verbose output * makes pretty console output. */ static void vx900_dram_map_pins(u8 ba0, u8 ba1, u8 ba2, u8 ra0, u8 ra1) { u16 map = 0; printram("Mapping address pins to DRAM pins:\n"); printram(" BA0 -> A%u\n", ba0); printram(" BA1 -> A%u\n", ba1); printram(" BA2 -> A%u\n", ba2); printram(" RA0 -> A%u\n", ra0); printram(" RA1 -> A%u\n", ra1); /* Make sure BA2 is enabled */ map |= (1 << 11); /* * Find RA1 (15:14) * 00: A14 * 01: A16 * 10: A18 * 11: A20 */ if ((ra1 & 0x01) || (ra1 < 14) || (ra1 > 20)) { printram("Illegal mapping RA1 -> A%u\n", ra1); return; } map |= (((ra1 - 14) >> 1) & 0x03) << 14; /* * Find RA0 (13:12) * 00: A15 * 01: A17 * 10: A19 * 11: A21 */ if ((!(ra0 & 0x01)) || (ra0 < 15) || (ra0 > 21)) { printram("Illegal mapping RA0 -> A%u\n", ra0); return; } map |= (((ra0 - 15) >> 1) & 0x03) << 12; /* * Find BA2 (10:8) * x00: A14 * x01: A15 * x10: A18 * x11: A19 */ switch (ba2) { case 14: map |= (0 << 8); break; case 15: map |= (1 << 8); break; case 18: map |= (2 << 8); break; case 19: map |= (3 << 8); break; default: printram("Illegal mapping BA2 -> A%u\n", ba2); break; } /* * Find BA1 (6:4) * 000: A12 * 001: A14 * 010: A16 * 011: A18 * 1xx: A20 */ if (((ba1 & 0x01)) || (ba1 < 12) || (ba1 > 20)) { printram("Illegal mapping BA1 -> A%u\n", ba1); return; } map |= (((ba1 - 12) >> 1) & 0x07) << 4; /* * Find BA0 (2:0) * 000: A11 * 001: A13 * 010: A15 * 011: A17 * 1xx: A19 */ if ((!(ba0 & 0x01)) || (ba0 < 11) || (ba0 > 19)) { printram("Illegal mapping BA0 -> A%u\n", ba0); return; } map |= (((ba0 - 11) >> 1) & 0x07) << 0; printram("Setting map mask (rx52) to %.4x\n", map); vx900_dram_set_ma_pin_map(map); } static void vx900_dram_write_init_config(void) { /* Keep our RAM space free of legacy stuff */ vx900_disable_legacy_rom_shadow(); /* Now worry about the real RAM init */ size_t i; for (i = 0; i < (sizeof(mcu_init_config) / sizeof(pci_reg8)); i++) { pci_write_config8(MCU, mcu_init_config[i].addr, mcu_init_config[i].val); } vx900_dram_set_ma_pin_map(VX900_CALIB_MA_MAP); /* FIXME: Slowing stuff down. Does this really help? */ /* Fast cycle control for CPU-to-DRAM Read Cycle 0:Disabled. * This CPU bus controller will wait for all data */ /* Memory to CPU bus Controller Conversion Mode 1: Synchronous mode */ } static void dram_find_spds_ddr3(const dimm_layout * addr, dimm_info * dimm) { size_t i = 0; int dimms = 0; do { spd_raw_data spd; spd_read(addr->spd_addr[i], spd); spd_decode_ddr3(&dimm->dimm[i], spd); if (dimm->dimm[i].dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3) continue; dimms++; dram_print_spd_ddr3(&dimm->dimm[i]); } while (addr->spd_addr[++i] != SPD_END_LIST && i < VX900_MAX_DIMM_SLOTS); if (!dimms) die("No DIMMs were found"); } static void dram_find_common_params(const dimm_info * dimms, ramctr_timing * ctrl) { size_t i, valid_dimms; memset(ctrl, 0, sizeof(ramctr_timing)); ctrl->cas_supported = 0xff; valid_dimms = 0; for (i = 0; i < VX900_MAX_DIMM_SLOTS; i++) { const dimm_attr *dimm = &dimms->dimm[i]; if (dimm->dram_type == SPD_MEMORY_TYPE_UNDEFINED) continue; valid_dimms++; if (valid_dimms == 1) { /* First DIMM defines the type of DIMM */ ctrl->dram_type = dimm->dram_type; ctrl->dimm_type = dimm->dimm_type; } else { /* Check if we have mismatched DIMMs */ if (ctrl->dram_type != dimm->dram_type || ctrl->dimm_type != dimm->dimm_type) die("Mismatched DIMM Types"); } /* Find all possible CAS combinations */ ctrl->cas_supported &= dimm->cas_supported; /* Find the smallest common latencies supported by all DIMMs */ ctrl->tCK = MAX(ctrl->tCK, dimm->tCK); ctrl->tAA = MAX(ctrl->tAA, dimm->tAA); ctrl->tWR = MAX(ctrl->tWR, dimm->tWR); ctrl->tRCD = MAX(ctrl->tRCD, dimm->tRCD); ctrl->tRRD = MAX(ctrl->tRRD, dimm->tRRD); ctrl->tRP = MAX(ctrl->tRP, dimm->tRP); ctrl->tRAS = MAX(ctrl->tRAS, dimm->tRAS); ctrl->tRC = MAX(ctrl->tRC, dimm->tRC); ctrl->tRFC = MAX(ctrl->tRFC, dimm->tRFC); ctrl->tWTR = MAX(ctrl->tWTR, dimm->tWTR); ctrl->tRTP = MAX(ctrl->tRTP, dimm->tRTP); ctrl->tFAW = MAX(ctrl->tFAW, dimm->tFAW); } ctrl->n_dimms = valid_dimms; if (!ctrl->cas_supported) die("Unsupported DIMM combination. " "DIMMS do not support common CAS latency"); if (!valid_dimms) die("No valid DIMMs found"); } static void vx900_dram_phys_bank_range(const dimm_info * dimms, rank_layout * ranks) { size_t i; for (i = 0; i < VX900_MAX_DIMM_SLOTS; i++) { if (dimms->dimm[i].dram_type == SPD_MEMORY_TYPE_UNDEFINED) continue; u8 nranks = dimms->dimm[i].ranks; /* Make sure we save the flags */ ranks->flags[i * 2 + 1] = ranks->flags[i * 2] = dimms->dimm[i].flags; /* Only Rank1 has a mirrored pin mapping */ ranks->flags[i * 2].pins_mirrored = 0; if (nranks > 2) die("Found DIMM with more than two ranks, which is not " "supported by this chipset"); u32 size = dimms->dimm[i].size_mb; if (nranks == 2) { /* Each rank holds half the capacity of the DIMM */ size >>= 1; ranks->phys_rank_size_mb[i << 1] = size; ranks->phys_rank_size_mb[(i << 1) | 1] = size; } else { /* Otherwise, everything is held in the first bank */ ranks->phys_rank_size_mb[i << 1] = size; ranks->phys_rank_size_mb[(i << 1) | 1] = 0; } } } #define ODT_R0 0 #define ODT_R1 1 #define ODT_R2 2 #define ODT_R3 3 /* * This is the table that tells us which MODT pin to map to which rank. * * This table is taken from code provided by VIA, but no explanation was * provided as to why it is done this way. It may be possible that this table is * not suitable for the way we map ranks later on. */ static const u8 odt_lookup_table[][2] = { /* RankMAP Rank 3 Rank 2 Rank 1 Rank 0 */ {0x01, (ODT_R3 << 6) | (ODT_R2 << 4) | (ODT_R1 << 2) | (ODT_R0 << 0)}, {0x03, (ODT_R3 << 6) | (ODT_R2 << 4) | (ODT_R0 << 2) | (ODT_R1 << 0)}, {0x04, (ODT_R3 << 6) | (ODT_R2 << 4) | (ODT_R1 << 2) | (ODT_R0 << 0)}, {0x05, (ODT_R3 << 6) | (ODT_R0 << 4) | (ODT_R1 << 2) | (ODT_R2 << 0)}, {0x07, (ODT_R3 << 6) | (ODT_R0 << 4) | (ODT_R2 << 2) | (ODT_R2 << 0)}, {0x0c, (ODT_R2 << 6) | (ODT_R3 << 4) | (ODT_R1 << 2) | (ODT_R0 << 0)}, {0x0d, (ODT_R0 << 6) | (ODT_R0 << 4) | (ODT_R1 << 2) | (ODT_R2 << 0)}, {0x0f, (ODT_R0 << 6) | (ODT_R0 << 4) | (ODT_R2 << 2) | (ODT_R2 << 0)}, {0, 0}, }; static void vx900_dram_driving_ctrl(const dimm_info * dimm) { size_t i, ndimms; u8 reg8, regxd5, rank_mask; rank_mask = 0; /* For ODT range selection, datasheet recommends * when 1 DIMM present: 60 Ohm * when 2 DIMMs present: 120 Ohm */ ndimms = 0; for (i = 0; i < VX900_MAX_DIMM_SLOTS; i++) { if (dimm->dimm[i].dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3) continue; ndimms++; rank_mask |= (1 << (i * 2)); if (dimm->dimm[i].ranks > 1) rank_mask |= (2 << (i * 2)); } /* ODT strength and MD/MDQM/MDQS driving strength */ if (ndimms > 1) { /* Enable 1 ODT block (120 Ohm ODT) */ regxd5 = 0 << 2; /* Enable strong driving for MD/MDQM/MDQS */ regxd5 |= (1 << 7); } else { /* Enable 2 ODT blocks (60 Ohm ODT) */ regxd5 = 1 << 2; /* Leave MD/MDQM/MDQS driving weak */ } pci_write_config8(MCU, 0xd5, regxd5); /* Enable strong CLK driving for DIMMs with more than one rank */ if (dimm->dimm[0].ranks > 1) pci_mod_config8(MCU, 0xd6, 0, (1 << 7)); if (dimm->dimm[1].ranks > 1) pci_mod_config8(MCU, 0xd6, 0, (1 << 6)); /* DRAM ODT Lookup Table */ for (i = 0;; i++) { if (odt_lookup_table[i][0] == 0) { printram("No ODT entry for rank mask %x\n", rank_mask); die("Aborting"); } if (odt_lookup_table[i][0] != rank_mask) continue; reg8 = odt_lookup_table[i][1]; break; } printram("Mapping rank mask %x to ODT entry %.2x\n", rank_mask, reg8); pci_write_config8(MCU, 0x9c, reg8); for (i = 0; i < (sizeof(mcu_drv_ctrl_config) / sizeof(pci_reg8)); i++) { pci_write_config8(MCU, mcu_drv_ctrl_config[i].addr, mcu_drv_ctrl_config[i].val); } } static void vx900_pr_map_all_vr3(void) { /* Enable all ranks and set them to VR3 */ pci_write_config16(MCU, 0x54, 0xbbbb); } /* Map physical rank pr to virtual rank vr */ static void vx900_map_pr_vr(u8 pr, u8 vr) { u16 val; pr &= 0x3; vr &= 0x3; /* Enable rank (bit [3], and set the VR number bits [1:0] */ val = 0x8 | vr; /* Now move the value to the appropriate PR */ val <<= (pr * 4); pci_mod_config16(MCU, 0x54, 0xf << (pr * 4), val); printram("Mapping PR %u to VR %u\n", pr, vr); } static u8 vx900_get_CWL(u8 CAS) { /* Get CWL based on CAS using the following rule: * _________________________________________ * CAS: | 4T | 5T | 6T | 7T | 8T | 9T | 10T | 11T | * CWL: | 5T | 5T | 5T | 6T | 6T | 7T | 7T | 8T | */ static const u8 cas_cwl_map[] = { 5, 5, 5, 6, 6, 7, 7, 8 }; if (CAS > 11) return 8; return cas_cwl_map[CAS - 4]; } /* * Here we are calculating latencies, and writing them to the appropriate * registers. Note that some registers do not take latencies from 0 = 0T, * 1 = 1T, so each register gets its own math formula. */ static void vx900_dram_timing(ramctr_timing * ctrl) { u8 reg8, val, tFAW, tRRD; u32 val32; /* Maximum supported DDR3 frequency is 533MHz (DDR3 1066) so make sure * we cap it if we have faster DIMMs. * Then, align it to the closest JEDEC standard frequency */ if (ctrl->tCK <= TCK_533MHZ) { ctrl->tCK = TCK_533MHZ; } else if (ctrl->tCK <= TCK_400MHZ) { ctrl->tCK = TCK_400MHZ; } else if (ctrl->tCK <= TCK_333MHZ) { ctrl->tCK = TCK_333MHZ; } else { ctrl->tCK = TCK_266MHZ; } val32 = (1000 << 8) / ctrl->tCK; printram("Selected DRAM frequency: %u MHz\n", val32); /* Find CAS and CWL latencies */ val = CEIL_DIV(ctrl->tAA, ctrl->tCK); printram("Minimum CAS latency : %uT\n", val); /* Find lowest supported CAS latency that satisfies the minimum value */ while (!((ctrl->cas_supported >> (val - 4)) & 1) && (ctrl->cas_supported >> (val - 4))) { val++; } /* Is CAS supported */ if (!(ctrl->cas_supported & (1 << (val - 4)))) printram("CAS not supported\n"); printram("Selected CAS latency : %uT\n", val); ctrl->CAS = val; ctrl->CWL = vx900_get_CWL(ctrl->CAS); printram("Selected CWL latency : %uT\n", ctrl->CWL); /* Write CAS and CWL */ reg8 = (((ctrl->CWL - 4) & 0x07) << 4) | ((ctrl->CAS - 4) & 0x07); pci_write_config8(MCU, 0xc0, reg8); /* Find tRCD */ val = CEIL_DIV(ctrl->tRCD, ctrl->tCK); printram("Selected tRCD : %uT\n", val); reg8 = ((val - 4) & 0x7) << 4; /* Find tRP */ val = CEIL_DIV(ctrl->tRP, ctrl->tCK); printram("Selected tRP : %uT\n", val); reg8 |= ((val - 4) & 0x7); pci_write_config8(MCU, 0xc1, reg8); /* Find tRAS */ val = CEIL_DIV(ctrl->tRAS, ctrl->tCK); printram("Selected tRAS : %uT\n", val); reg8 = ((val - 15) & 0x7) << 4; /* Find tWR */ ctrl->WR = CEIL_DIV(ctrl->tWR, ctrl->tCK); printram("Selected tWR : %uT\n", ctrl->WR); reg8 |= ((ctrl->WR - 4) & 0x7); pci_write_config8(MCU, 0xc2, reg8); /* Find tFAW */ tFAW = CEIL_DIV(ctrl->tFAW, ctrl->tCK); printram("Selected tFAW : %uT\n", tFAW); /* Find tRRD */ tRRD = CEIL_DIV(ctrl->tRRD, ctrl->tCK); printram("Selected tRRD : %uT\n", tRRD); val = tFAW - 4 * tRRD; /* number of cycles above 4*tRRD */ reg8 = ((val - 0) & 0x7) << 4; reg8 |= ((tRRD - 2) & 0x7); pci_write_config8(MCU, 0xc3, reg8); /* Find tRTP */ val = CEIL_DIV(ctrl->tRTP, ctrl->tCK); printram("Selected tRTP : %uT\n", val); reg8 = ((val & 0x3) << 4); /* Find tWTR */ val = CEIL_DIV(ctrl->tWTR, ctrl->tCK); printram("Selected tWTR : %uT\n", val); reg8 |= ((val - 2) & 0x7); pci_mod_config8(MCU, 0xc4, 0x3f, reg8); /* DRAM Timing for All Ranks - VI * [7:6] CKE Assertion Minimum Pulse Width * We probably don't want to mess with this just yet. * [5:0] Refresh-to-Active or Refresh-to-Refresh (tRFC) * tRFC = (30 + 2 * [5:0])T * Since we previously set RxC4[7] */ reg8 = pci_read_config8(MCU, 0xc5); val = CEIL_DIV(ctrl->tRFC, ctrl->tCK); printram("Minimum tRFC : %uT\n", val); if (val < 30) { val = 0; } else { val = (val - 30 + 1) / 2; } ; printram("Selected tRFC : %uT\n", 30 + 2 * val); reg8 |= (val & 0x3f); pci_write_config8(MCU, 0xc5, reg8); /* Where does this go??? */ val = CEIL_DIV(ctrl->tRC, ctrl->tCK); printram("Required tRC : %uT\n", val); } /* Program the DRAM frequency */ static void vx900_dram_freq(ramctr_timing * ctrl) { u8 val; /* Step 1 - Reset the PLL */ pci_mod_config8(MCU, 0x90, 0x00, 0x0f); /* Wait at least 10 ns; VIA code delays by 640us */ udelay(640); /* Step 2 - Set target frequency */ if (ctrl->tCK <= TCK_533MHZ) { val = 0x07; ctrl->tCK = TCK_533MHZ; } else if (ctrl->tCK <= TCK_400MHZ) { val = 0x06; ctrl->tCK = TCK_400MHZ; } else if (ctrl->tCK <= TCK_333MHZ) { val = 0x05; ctrl->tCK = TCK_333MHZ; } else { /*ctrl->tCK <= TCK_266MHZ */ val = 0x04; ctrl->tCK = TCK_266MHZ; } /* Restart the PLL with the desired frequency */ pci_mod_config8(MCU, 0x90, 0x0f, val); /* Step 3 - Wait for PLL to stabilize */ udelay(2000); /* Step 4 - Reset the DLL - Clear [7,4] */ pci_mod_config8(MCU, 0x6b, 0x90, 0x00); udelay(2000); /* Step 5 - Enable the DLL - Set bits [7,4] to 01b */ pci_mod_config8(MCU, 0x6b, 0x00, 0x10); udelay(2000); /* Step 6 - Start DLL Calibration - Set bit [7] */ pci_mod_config8(MCU, 0x6b, 0x00, 0x80); udelay(5); /* Step 7 - Finish DLL Calibration - Clear bit [7] */ pci_mod_config8(MCU, 0x6b, 0x80, 0x00); /* Step 8 - If we have registered DIMMs, we need to set bit[0] */ if (spd_dimm_is_registered_ddr3(ctrl->dimm_type)) { printram("Enabling RDIMM support in memory controller\n"); pci_mod_config8(MCU, 0x6c, 0x00, 0x01); } } /* * The VX900 can send the MRS commands directly through hardware * It does the MR2->MR3->MR1->MR0->LongZQ JEDEC dance * The parameters that we don't worry about are extracted from the timing * registers we have programmed earlier. */ static void vx900_dram_ddr3_do_hw_mrs(u8 ma_swap, u8 rtt_nom, u8 ods, u8 rtt_wr, u8 srt, u8 asr) { u16 reg16 = 0; printram("Using Hardware method for DRAM MRS commands.\n"); reg16 |= ((rtt_wr & 0x03) << 12); if (srt) reg16 |= (1 << 9); if (asr) reg16 |= (1 << 8); reg16 |= ((rtt_nom & 0x7) << 4); reg16 |= ((ods & 0x03) << 2); if (ma_swap) reg16 |= (1 << 1); reg16 |= (1 << 14); reg16 |= (1 << 0); /* This is the trigger bit */ printram("Hw MRS set is 0x%4x\n", reg16); pci_write_config16(MCU, 0xcc, reg16); /* Wait for MRS commands to be sent */ while (pci_read_config8(MCU, 0xcc) & 1); } /* * Translate the MRS command into an address on the CPU bus * * Take an MRS command (mrs_cmd_t) and translate it to a read address on the CPU * bus. Thus, reading from the returned address, will issue the correct MRS * command, assuming we are in MRS mode, of course. * * A read from the returned address will produce the correct MRS command * provided the following conditions are met: * - The MA pin mapping is set to VX900_MRS_MA_MAP * - The memory controller's Fun3_RX6B[2:0] is set to 011b (MSR Enable) */ static u32 vx900_get_mrs_addr(mrs_cmd_t cmd) { u32 addr = 0; u8 mrs_type = (cmd >> 16) & 0x07; /* MA[9:0] <-> A[12:3] */ addr |= ((cmd & 0x3ff) << 3); /* MA10 <-> A20 */ addr |= (((cmd >> 10) & 0x1) << 20); /* MA[12:11] <-> A[14:13] */ addr |= (((cmd >> 11) & 0x3) << 13); /* BA[2:0] <-> A[19:17] */ addr |= mrs_type << 17; return addr; } /* * Here, we do the MR2->MR3->MR1->MR0->LongZQ JEDEC dance manually * * Why would we do this in software, when the VX900 can do it in hardware? The * problem is the hardware sequence seems to be buggy on ranks with mirrored * pins. Is this a hardware bug or a misconfigured MCU? No idea. * * To maintain API compatibility with the function that implements the hardware * sequence, we don't ask for all parameters. To keep an overall cleaner code * structure, we don't try to pass down all that information. Instead, we * extract the extra parameters from the timing registers we have programmed * earlier. */ static void vx900_dram_ddr3_do_sw_mrs(u8 ma_swap, enum ddr3_mr1_rtt_nom rtt_nom, enum ddr3_mr1_ods ods, enum ddr3_mr2_rttwr rtt_wr, enum ddr3_mr2_srt_range srt, enum ddr3_mr2_asr asr) { mrs_cmd_t mrs; u8 reg8, cas, cwl, twr; printram("Using Software method for DRAM MRS commands.\n"); /* Get CAS, CWL, and tWR that we programmed earlier */ reg8 = pci_read_config8(MCU, 0xc0); cas = (reg8 & 0x07) + 4; cwl = ((reg8 >> 4) & 0x07) + 4; reg8 = pci_read_config8(MCU, 0xc2); twr = (reg8 & 0x07) + 4; /* Step 06 - Set Fun3_RX6B[2:0] to 001b (NOP Command Enable). */ /* Was already done for us before calling us */ /* Step 07 - Read a double word from any address of the DIMM. */ /* Was already done for us before calling us */ /* Step 08 - Set Fun3_RX6B[2:0] to 011b (MSR Enable). */ pci_mod_config8(MCU, 0x6b, 0x07, 0x03); /* MSR Enable */ /* Step 09 - Issue MR2 cycle. Read a double word from the address * depended on DRAM's Rtt_WR and CWL settings. */ mrs = ddr3_get_mr2(rtt_wr, srt, asr, cwl); if (ma_swap) mrs = ddr3_mrs_mirror_pins(mrs); volatile_read(vx900_get_mrs_addr(mrs)); printram("MR2: %.5x\n", mrs); udelay(1000); /* Step 10 - Issue MR3 cycle. Read a double word from the address 60000h * to set DRAM to normal operation mode. */ mrs = ddr3_get_mr3(0); if (ma_swap) mrs = ddr3_mrs_mirror_pins(mrs); volatile_read(vx900_get_mrs_addr(mrs)); printram("MR3: %.5x\n", mrs); udelay(1000); /* Step 11 -Issue MR1 cycle. Read a double word from the address * depended on DRAM's output driver impedance and Rtt_Nom settings. * The DLL enable field, TDQS field, write leveling enable field, * additive latency field and Qoff field should be set to 0. */ mrs = ddr3_get_mr1(DDR3_MR1_QOFF_ENABLE, DDR3_MR1_TQDS_DISABLE, rtt_nom, DDR3_MR1_WRLVL_DISABLE, ods, DDR3_MR1_AL_DISABLE, DDR3_MR1_DLL_ENABLE); if (ma_swap) mrs = ddr3_mrs_mirror_pins(mrs); volatile_read(vx900_get_mrs_addr(mrs)); printram("MR1: %.5x\n", mrs); udelay(1000); /* Step 12 - Issue MR0 cycle. Read a double word from the address * depended on DRAM's burst length, CAS latency and write recovery time * settings. * The read burst type field should be set to interleave. * The mode field should be set to normal mode. * The DLL reset field should be set to No. * The DLL control for precharge PD field should be set to Fast exit. */ mrs = ddr3_get_mr0(DDR3_MR0_PRECHARGE_FAST, twr, DDR3_MR0_DLL_RESET_NO, DDR3_MR0_MODE_NORMAL, cas, DDR3_MR0_BURST_TYPE_INTERLEAVED, DDR3_MR0_BURST_LENGTH_CHOP); volatile_read(vx900_get_mrs_addr(mrs)); printram("MR0: %.5x\n", mrs); udelay(1000); /* Step 13 - Set Fun3_RX6B[2:0] to 110b (Long ZQ calibration cmd) */ pci_mod_config8(MCU, 0x6b, 0x07, 0x06); /* Long ZQ */ /* Step 14 - Read a double word from any address of the DIMM. */ volatile_read(0); udelay(1000); } /* * This is where we take the DIMMs out of reset and do the JEDEC dance for each * individual physical rank. */ static void vx900_dram_ddr3_dimm_init(const ramctr_timing * ctrl, const rank_layout * ranks) { size_t i; u8 rtt_nom, rtt_wr, ods, pinswap; /* Set BA[0/1/2] to [A17/18/19] */ vx900_dram_set_ma_pin_map(VX900_MRS_MA_MAP); /* Step 01 - Set Fun3_Rx6E[5] to 1b to support burst length. */ pci_mod_config8(MCU, 0x6e, 0, 1 << 5); /* Step 02 - Set Fun3_RX69[0] to 0b (Disable Multiple Page Mode). */ pci_mod_config8(MCU, 0x69, (1 << 0), 0x00); /* And set [7:6] to 10b ? */ pci_write_config8(MCU, 0x69, 0x87); /* Step 03 - Set the target physical rank to virtual rank0 and other * ranks to virtual rank3. */ vx900_pr_map_all_vr3(); /* Step 04 - Set Fun3_Rx50 to D8h. */ pci_write_config8(MCU, 0x50, 0xd8); /* Step 05 - Set Fun3_RX6B[5] to 1b to de-assert RESET# and wait for at * least 500 us. */ pci_mod_config8(MCU, 0x6b, 0x00, (1 << 5)); udelay(500); /* Step 6 -> 15 - Set the target physical rank to virtual rank 0 and * other ranks to virtual rank 3. * Repeat Step 6 to 14 for every rank present, then jump to Step 16. */ for (i = 0; i < VX900_MAX_MEM_RANKS; i++) { if (ranks->phys_rank_size_mb[i] == 0) continue; printram("Initializing rank %zu\n", i); /* Set target physical rank to virtual rank 0 * other ranks to virtual rank 3*/ vx900_map_pr_vr(i, 0); /* FIXME: Is this needed on HW init? */ pci_mod_config8(MCU, 0x6b, 0x07, 0x01); /* Enable NOP */ volatile_read(0x0); /* Do NOP */ pci_mod_config8(MCU, 0x6b, 0x07, 0x03); /* MSR Enable */ /* See init_dram_by_rank.c and get_basic_information.c * in the VIA provided code */ if (ctrl->n_dimms == 1) { rtt_nom = DDR3_MR1_RTT_NOM_RZQ2; rtt_wr = DDR3_MR2_RTTWR_OFF; } else { rtt_nom = DDR3_MR1_RTT_NOM_RZQ8; rtt_wr = DDR3_MR2_RTTWR_RZQ2; } ods = ranks->flags[i].rzq7_supported ? DDR3_MR1_ODS_RZQ7 : DDR3_MR1_ODS_RZQ6; pinswap = (ranks->flags[i].pins_mirrored); if (pinswap) printram("Pins mirrored\n"); printram(" Swap : %x\n", pinswap); printram(" rtt_nom : %x\n", rtt_nom); printram(" ods : %x\n", ods); printram(" rtt_wr : %x\n", rtt_wr); if (RAMINIT_USE_HW_MRS_SEQ) vx900_dram_ddr3_do_hw_mrs(pinswap, rtt_nom, ods, rtt_wr, 0, 0); else vx900_dram_ddr3_do_sw_mrs(pinswap, rtt_nom, ods, rtt_wr, 0, 0); /* Normal SDRAM Mode */ pci_mod_config8(MCU, 0x6b, 0x07, 0x00); /* Step 15, set the rank to virtual rank 3 */ vx900_map_pr_vr(i, 3); } /* Step 16 - Set Fun3_Rx6B[2:0] to 000b (Normal SDRAM Mode). */ pci_mod_config8(MCU, 0x6b, 0x07, 0x00); /* Set BA[0/1/2] to [A13/14/15] */ vx900_dram_set_ma_pin_map(VX900_CALIB_MA_MAP); /* Step 17 - Set Fun3_Rx69[0] to 1b (Enable Multiple Page Mode). */ pci_mod_config8(MCU, 0x69, 0x00, (1 << 0)); printram("DIMM initialization sequence complete\n"); } /* * This a small utility to send a single MRS command, but where we don't want to * have to worry about changing the MCU mode. It gives the MCU back to us in * normal operating mode. */ static void vx900_dram_send_soft_mrs(mrs_cmd_t cmd, u8 pin_swap) { u32 addr; /* Set Fun3_RX6B[2:0] to 011b (MSR Enable). */ pci_mod_config8(MCU, 0x6b, 0x07, (3 << 0)); /* Is this a funky rank with Address pins swapped? */ if (pin_swap) cmd = ddr3_mrs_mirror_pins(cmd); /* Find the address corresponding to the MRS */ addr = vx900_get_mrs_addr(cmd); /* Execute the MRS */ volatile_read(addr); /* Set Fun3_Rx6B[2:0] to 000b (Normal SDRAM Mode). */ pci_mod_config8(MCU, 0x6b, 0x07, 0x00); } static void vx900_dram_enter_read_leveling(u8 pinswap) { /* Precharge all before issuing read leveling MRS to DRAM */ pci_mod_config8(MCU, 0x06b, 0x07, 0x02); volatile_read(0x0); udelay(1000); /* Enable read leveling: Set D0F3Rx71[7]=1 */ pci_mod_config8(MCU, 0x71, 0, (1 << 7)); /* Put DRAM in read leveling mode */ mrs_cmd_t cmd = ddr3_get_mr3(1); vx900_dram_send_soft_mrs(cmd, pinswap); } static void vx900_dram_exit_read_leveling(u8 pinswap) { /* Disable read leveling, and put dram in normal operation mode */ mrs_cmd_t cmd = ddr3_get_mr3(0); vx900_dram_send_soft_mrs(cmd, pinswap); /* Disable read leveling: Set D0F3Rx71[7]=0 */ pci_mod_config8(MCU, 0x71, (1 << 7), 0); } /* * We need to see if the delay window (difference between minimum and maximum) * is large enough so that we actually have a valid window. The signal should be * valid for at least 1/2T in general. If the window is significantly smaller, * then chances are our window does not latch at the correct time, and the * calibration will not work. */ #define DQSI_THRESHOLD 0x10 #define DQO_THRESHOLD 0x09 #define DQSO_THRESHOLD 0x12 #define DELAY_RANGE_GOOD 0 #define DELAY_RANGE_BAD -1 static u8 vx900_dram_check_calib_range(const delay_range * dly, u8 window) { size_t i; for (i = 0; i < 8; i++) { if (dly->high[i] - dly->low[i] < window) return DELAY_RANGE_BAD; /* When our maximum value is lower than our min, both values * have overshot, and the window is definitely invalid */ if (dly->high[i] < dly->low[i]) return DELAY_RANGE_BAD; } return DELAY_RANGE_GOOD; } static void vx900_dram_find_avg_delays(vx900_delay_calib * delays) { size_t i; u16 dq_low, dq_high, dqs_low, dqs_high, dq_final, dqs_final; /* * At this point, we have transmit delays for both DIMMA and DIMMB, each * with a slightly different window We want to find the intersection of * those windows, so that we have a constrained window which both * DIMMA and DIMMB can use. The center of our constrained window will * also be the safest setting for the transmit delays * * DIMMA window t:|xxxxxxxxxxxxxx---------------xxxxxxxxxxxxxxxxxxxxxxx| * DIMMB window t:|xxxxxxxxxxxxxxxxxxx---------------xxxxxxxxxxxxxxxxxx| * Safe window t:|xxxxxxxxxxxxxxxxxxx----------xxxxxxxxxxxxxxxxxxxxxxx| */ delay_range *tx_dq_a = &(delays->tx_dq[0]); delay_range *tx_dq_b = &(delays->tx_dq[1]); delay_range *tx_dqs_a = &(delays->tx_dqs[0]); delay_range *tx_dqs_b = &(delays->tx_dqs[1]); for (i = 0; i < 8; i++) { dq_low = MAX(tx_dq_a->low[i], tx_dq_b->low[i]); dq_high = MIN(tx_dq_a->high[i], tx_dq_b->high[i]); dqs_low = MAX(tx_dqs_a->low[i], tx_dqs_b->low[i]); dqs_high = MIN(tx_dqs_a->high[i], tx_dqs_b->high[i]); /* Find the average */ dq_final = ((dq_low + dq_high) / 2); dqs_final = ((dqs_low + dqs_high) / 2); /* * These adjustments are done in code provided by VIA. * There is no explanation as to why this is done. * * We can get away without doing the DQS adjustment, but doing * it, brings the values closer to what the vendor BIOS * calibrates to. */ if ((dqs_final & 0x1f) >= 0x1c) dqs_final -= 0x1c; else dqs_final += 0x04; /* * The DQ adjustment is more critical. If we don't do this * adjustment our MCU won't be configured properly, and * ram_check() will fail. */ if ((dq_final & 0x1f) >= 0x14) dq_final -= 0x14; else dq_final += 0x0c; /* Store our values in the first delay */ delays->tx_dq[0].avg[i] = dq_final; delays->tx_dqs[0].avg[i] = dqs_final; } } /* * First calibration: When to receive data from the DRAM * (MD and MDQS input delay) * * This calibration unfortunately does not seem to work. Whether this is due to * a misconfigured MCU or hardware bug is unknown. */ static void vx900_rx_capture_range_calib(u8 pinswap) { u8 reg8; const u32 cal_addr = 0x20; /* Set IO calibration address */ pci_mod_config16(MCU, 0x8c, 0xfff0, cal_addr & (0xfff0)); /* Data pattern must be 0x00 for this calibration * See paragraph describing Rx8e */ pci_write_config8(MCU, 0x8e, 0x00); /* Need to put DRAM and MCU in read leveling */ vx900_dram_enter_read_leveling(pinswap); /* Data pattern must be 0x00 for this calibration * See paragraph describing Rx8e */ pci_write_config8(MCU, 0x8e, 0x00); /* Trigger calibration */ reg8 = 0xa0; pci_write_config8(MCU, 0x71, reg8); /* Wait for it */ while (pci_read_config8(MCU, 0x71) & 0x10); vx900_dram_exit_read_leveling(pinswap); } /* * Second calibration: How much to delay DQS signal by * (MDQS input delay) */ static void vx900_rx_dqs_delay_calib(u8 pinswap) { const u32 cal_addr = 0x30; /* We need to disable refresh commands so that they don't interfere */ const u8 ref_cnt = pci_read_config8(MCU, 0xc7); pci_write_config8(MCU, 0xc7, 0); /* Set IO calibration address */ pci_mod_config16(MCU, 0x8c, 0xfff0, cal_addr & (0xfff0)); /* Data pattern must be 0x00 for this calibration * See paragraph describing Rx8e */ pci_write_config8(MCU, 0x8e, 0x00); /* Need to put DRAM and MCU in read leveling */ vx900_dram_enter_read_leveling(pinswap); /* From VIA code; Undocumented * In theory this enables MODT[3:0] to be asserted */ pci_mod_config8(MCU, 0x9e, 0, 0x80); /* Trigger calibration: Set D0F3Rx71[1:0]=10b */ pci_mod_config8(MCU, 0x71, 0x03, 0x02); /* Wait for calibration to complete */ while (pci_read_config8(MCU, 0x71) & 0x02); vx900_dram_exit_read_leveling(pinswap); /* Restore the refresh counter */ pci_write_config8(MCU, 0xc7, ref_cnt); /* FIXME: should we save it before, or should we just set it as is */ vx900_dram_set_ma_pin_map(VX900_CALIB_MA_MAP); } static void vx900_tx_dqs_trigger_calib(u8 pattern) { /* Data pattern for calibration */ pci_write_config8(MCU, 0x8e, pattern); /* Trigger calibration */ pci_mod_config8(MCU, 0x75, 0, 0x20); /* Wait for calibration */ while (pci_read_config8(MCU, 0x75) & 0x20); } /* * Third calibration: How much to wait before asserting DQS */ static void vx900_tx_dqs_delay_calib(void) { const u32 cal_addr = 0x00; /* Set IO calibration address */ pci_mod_config16(MCU, 0x8c, 0xfff0, cal_addr & (0xfff0)); /* Set circuit to use calibration results - Clear Rx75[0] */ pci_mod_config8(MCU, 0x75, 0x01, 0); /* Run calibration with first data pattern */ vx900_tx_dqs_trigger_calib(0x5a); /* Run again with different pattern */ vx900_tx_dqs_trigger_calib(0xa5); } /* * Fourt calibration: How much to wait before putting data on DQ lines */ static void vx900_tx_dq_delay_calib(void) { /* Data pattern for calibration */ pci_write_config8(MCU, 0x8e, 0x5a); /* Trigger calibration */ pci_mod_config8(MCU, 0x75, 0, 0x02); /* Wait for calibration */ while (pci_read_config8(MCU, 0x75) & 0x02); } static void vx900_rxdqs_adjust(delay_range * dly) { /* Adjust Rx DQS delay after calibration has been run. This is * recommended by VIA, but no explanation was provided as to why */ size_t i; for (i = 0; i < 8; i++) { if (dly->low[i] < 3) { if (i == 2 || i == 4) dly->avg[i] += 4; else dly->avg[i] += 3; } if (dly->high[i] > 0x38) dly->avg[i] -= 6; else if (dly->high[i] > 0x30) dly->avg[i] -= 4; if (dly->avg[i] > 0x20) dly->avg[i] = 0x20; } /* Put Rx DQS delay into manual mode (Set Rx[2,0] to 01) */ pci_mod_config8(MCU, 0x71, 0x05, 0x01); /* Now write the new settings */ vx900_delay_calib_mode_select(CALIB_RxDQS, CALIB_MANUAL); vx900_write_0x78_0x7f(dly->avg); } static void vx900_dram_calibrate_receive_delays(vx900_delay_calib * delays, u8 pinswap) { size_t n_tries = 0; delay_range *rx_dq_cr = &(delays->rx_dq_cr); delay_range *rx_dqs = &(delays->rx_dqs); /* We really should be able to finish this in a single pass, but it may * in very rare circumstances not work the first time. We define a limit * on the number of tries so that we have a way of warning the user */ const size_t max_tries = 100; for (;;) { if (n_tries++ >= max_tries) { die("Could not calibrate receive delays. Giving up"); } u8 result; /* Run calibrations */ if (RAMINIT_USE_HW_RXCR_CALIB) { vx900_rx_capture_range_calib(pinswap); vx900_read_delay_range(rx_dq_cr, CALIB_RxDQ_CR); dump_delay_range(*rx_dq_cr); } else { /*FIXME: Cheating with Rx CR setting\ * We need to either use Rx CR calibration * or set up a table for the calibration */ u8 *override = &(rx_dq_cr->avg[0]); override[0] = 0x28; override[1] = 0x1c; override[2] = 0x28; override[3] = 0x28; override[4] = 0x2c; override[5] = 0x30; override[6] = 0x30; override[7] = 0x34; printram("Bypassing RxCR 78-7f calibration with:\n"); dump_delay(rx_dq_cr->avg); } /* We need to put the setting on manual mode */ pci_mod_config8(MCU, 0x71, 0, 1 << 4); vx900_delay_calib_mode_select(CALIB_RxDQ_CR, CALIB_MANUAL); vx900_write_0x78_0x7f(rx_dq_cr->avg); /************* RxDQS *************/ vx900_rx_dqs_delay_calib(pinswap); vx900_read_delay_range(rx_dqs, CALIB_RxDQS); vx900_rxdqs_adjust(rx_dqs); result = vx900_dram_check_calib_range(rx_dqs, DQSI_THRESHOLD); if (result != DELAY_RANGE_GOOD) continue; /* We're good to go. Switch to manual and write the manual * setting */ pci_mod_config8(MCU, 0x71, 0, 1 << 0); vx900_delay_calib_mode_select(CALIB_RxDQS, CALIB_MANUAL); vx900_write_0x78_0x7f(rx_dqs->avg); break; } if (n_tries > 1) printram("Hmm, we had to try %zu times before our calibration " "was good.\n", n_tries); } static void vx900_dram_calibrate_transmit_delays(delay_range * tx_dq, delay_range * tx_dqs) { /* Same timeout reasoning as in receive delays */ size_t n_tries = 0; int dq_tries = 0, dqs_tries = 0; const size_t max_tries = 100; for (;;) { if (n_tries++ >= max_tries) { printram("Tried DQS %i times and DQ %i times\n", dqs_tries, dq_tries); printram("Tx DQS calibration results\n"); dump_delay_range(*tx_dqs); printram("TX DQ delay calibration results:\n"); dump_delay_range(*tx_dq); die("Could not calibrate transmit delays. Giving up"); } u8 result; /************* TxDQS *************/ dqs_tries++; vx900_tx_dqs_delay_calib(); vx900_read_delay_range(tx_dqs, CALIB_TxDQS); result = vx900_dram_check_calib_range(tx_dqs, DQSO_THRESHOLD); if (result != DELAY_RANGE_GOOD) continue; /************* TxDQ *************/ /* FIXME: not sure if multiple page mode should be enabled here * Vendor BIOS does it */ pci_mod_config8(MCU, 0x69, 0, 0x01); dq_tries++; vx900_tx_dq_delay_calib(); vx900_read_delay_range(tx_dq, CALIB_TxDQ); result = vx900_dram_check_calib_range(tx_dq, DQO_THRESHOLD); if (result != DELAY_RANGE_GOOD) continue; /* At this point, our RAM should give correct read-backs for * addresses under 64 MB. If it doesn't, it won't work */ if (ram_check_noprint_nodie(1 << 20, 1 << 20)) { /* No, our RAM is not working, try again */ /* FIXME: Except that we have not yet told the MCU what * the geometry of the DIMM is, hence we don't trust * this test for now */ } /* Good. We should be able to use this DIMM */ /* That's it. We're done */ break; } if (n_tries > 1) printram("Hmm, we had to try %zu times before our calibration " "was good.\n", n_tries); } /* * The meat and potatoes of getting our MCU to operate the DIMMs properly. * * Thank you JEDEC for making us need configurable delays for each set of MD * signals. */ static void vx900_dram_calibrate_delays(const ramctr_timing * ctrl, const rank_layout * ranks) { size_t i; u8 val; u8 dimm; vx900_delay_calib delay_cal; memset(&delay_cal, 0, sizeof(delay_cal)); printram("Starting delay calibration\n"); /**** Read delay control ****/ /* MD Input Data Push Timing Control; * use values recommended in datasheet * Setting this too low causes the Rx window to move below the range we * need it so we can capture it with Rx_78_7f * This causes Rx calibrations to be too close to 0, and Tx * calibrations will fail. * Setting this too high causes the window to move above the range. */ if (ctrl->tCK <= TCK_533MHZ) val = 2; else if (ctrl->tCK <= TCK_333MHZ) val = 1; else val = 0; val++; /* FIXME: vendor BIOS sets this to 3 */ pci_mod_config8(MCU, 0x74, (0x03 << 1), ((val & 0x03) << 1)); /* FIXME: The vendor BIOS increases the MD input delay - WHY ? */ pci_mod_config8(MCU, 0xef, (3 << 4), 3 << 4); /**** Write delay control ****/ /* FIXME: The vendor BIOS does this, but WHY? * See check_special_registers in VIA provided code. This value seems * to depend on the DRAM frequency. */ /* Early DQ/DQS for write cycles */ pci_mod_config8(MCU, 0x76, (3 << 2), 2 << 2); /* FIXME: The vendor BIOS does this - Output preamble ? */ pci_write_config8(MCU, 0x77, 0x10); /* Set BA[0/1/2] to [A17/18/19] */ vx900_dram_set_ma_pin_map(VX900_MRS_MA_MAP); /* Disable Multiple Page Mode - Set Rx69[0] to 0 */ pci_mod_config8(MCU, 0x69, (1 << 0), 0x00); /* It's very important that we keep all ranks which are not calibrated * mapped to VR3. Even if we disable them, if they are mapped to VR0 * (the rank we use for calibrations), the calibrations may fail in * unexpected ways. */ vx900_pr_map_all_vr3(); /* We only really need to run the receive calibrations once. They are * meant to account for signal travel differences in the internal paths * of the MCU, so it doesn't really matter which rank we use for this. * Differences between ranks will be accounted for in the transmit * calibration. */ for (i = 0; i < VX900_MAX_DIMM_SLOTS; i += 2) { /* Do we have a valid DIMM? */ if (ranks->phys_rank_size_mb[i] + ranks->phys_rank_size_mb[i + 1] == 0) continue; /* Map the first rank of the DIMM to VR0 */ vx900_map_pr_vr(2 * i, 0); /* Only run on first rank, remember? */ break; } vx900_dram_calibrate_receive_delays(&delay_cal, ranks->flags[i].pins_mirrored); printram("RX DQS calibration results\n"); dump_delay_range(delay_cal.rx_dqs); /* Enable multiple page mode for when calibrating transmit delays */ pci_mod_config8(MCU, 0x69, 0, 1 << 1); /* * Unlike the receive delays, we need to run the transmit calibration * for each DIMM (not rank). We run the calibration on the even rank. * The odd rank may have memory pins swapped, and this, it seems, * confuses the calibration circuit. */ dimm = 0; for (i = 0; i < VX900_MAX_DIMM_SLOTS; i++) { /* Do we have a valid DIMM? */ u32 dimm_size_mb = ranks->phys_rank_size_mb[2 * i] + ranks->phys_rank_size_mb[2 * i + 1]; if (dimm_size_mb == 0) continue; /* Map the first rank of the DIMM to VR0 */ vx900_map_pr_vr(2 * i, 0); vx900_dram_calibrate_transmit_delays(&(delay_cal.tx_dq[dimm]), &(delay_cal.tx_dqs[dimm])); /* We run this more than once, so dump delays for each DIMM */ printram("Tx DQS calibration results\n"); dump_delay_range(delay_cal.tx_dqs[dimm]); printram("TX DQ delay calibration results:\n"); dump_delay_range(delay_cal.tx_dq[dimm]); /* Now move the DIMM back to VR3 */ vx900_map_pr_vr(2 * i, 3); /* We use dimm as a counter so that we fill tx_dq[] and tx_dqs[] * results in order from 0, and do not leave any gaps */ dimm++; } /* When we have more dimms, we need to find a tx window with which all * dimms can safely work */ if (dimm > 1) { vx900_dram_find_avg_delays(&delay_cal); printram("Final delay values\n"); printram("Tx DQS: "); dump_delay(delay_cal.tx_dqs[0].avg); printram("Tx DQ: "); dump_delay(delay_cal.tx_dq[0].avg); } /* Write manual settings */ pci_mod_config8(MCU, 0x75, 0, 0x01); vx900_delay_calib_mode_select(CALIB_TxDQS, CALIB_MANUAL); vx900_write_0x78_0x7f(delay_cal.tx_dqs[0].avg); vx900_delay_calib_mode_select(CALIB_TxDQ, CALIB_MANUAL); vx900_write_0x78_0x7f(delay_cal.tx_dq[0].avg); } static void vx900_dram_set_refresh_counter(ramctr_timing * ctrl) { u8 reg8; /* Set DRAM refresh counter * Based on a refresh counter of 0x61 at 400MHz */ reg8 = (TCK_400MHZ * 0x61) / ctrl->tCK; pci_write_config8(MCU, 0xc7, reg8); } /* * Here, we map each rank somewhere in our address space. We don't really care * at this point if this will overlap the PCI config space. If needed, remapping * is done in ramstage, where we actually know how much PCI space we actually * need. */ static void vx900_dram_range(ramctr_timing * ctrl, rank_layout * ranks) { size_t i, vrank = 0; u8 reg8; u32 ramsize_mb = 0, tolm_mb; const u32 TOLM_3_5G = (7 << 29); /* All unused physical ranks go to VR3. Otherwise, the MCU might be * trying to read or write from unused ranks, or even worse, write some * bits to the rank we want, and some to the unused ranks, even though * they are disabled. Since VR3 is the last virtual rank to be used, we * eliminate any ambiguities that the MCU may face. */ vx900_pr_map_all_vr3(); for (i = 0; i < VX900_MAX_MEM_RANKS; i++) { u32 rank_size_mb = ranks->phys_rank_size_mb[i]; if (!rank_size_mb) continue; /* vvvvvvvvvv FIXME: Fix odd rank init vvvvvvvvvv */ if ((i & 1)) { printk(BIOS_EMERG, "I cannot initialize rank %zu\n", i); printk(BIOS_EMERG, "I have to disable it\n"); continue; } /* ^^^^^^^^^^ FIXME: Fix odd rank init ^^^^^^^^^^ */ ranks->virt[vrank].start_addr = ramsize_mb; ramsize_mb += rank_size_mb; ranks->virt[vrank].end_addr = ramsize_mb; /* Rank memory range */ reg8 = (ranks->virt[vrank].start_addr >> 6); pci_write_config8(MCU, 0x48 + vrank, reg8); reg8 = (ranks->virt[vrank].end_addr >> 6); pci_write_config8(MCU, 0x40 + vrank, reg8); vx900_map_pr_vr(i, vrank); printram("Mapped Physical rank %u, to virtual rank %u\n" " Start address: 0x%.10llx\n" " End address: 0x%.10llx\n", (int)i, (int)vrank, (u64) ranks->virt[vrank].start_addr << 20, (u64) ranks->virt[vrank].end_addr << 20); /* Move on to next virtual rank */ vrank++; } /* Limit the Top of Low memory at 3.5G * Not to worry, we'll set tolm in ramstage, once we have initialized * all devices and know pci_tolm. */ tolm_mb = MIN(ramsize_mb, TOLM_3_5G >> 20); u16 reg_tolm = (tolm_mb << 4) & 0xfff0; pci_mod_config16(MCU, 0x84, 0xfff0, reg_tolm); printram("Initialized %u virtual ranks, with a total size of %u MB\n", (int)vrank, ramsize_mb); } /* * Here, we tell the memory controller how to treat a DIMM. This is an extremely * important step. It tells the MCU how many address bits we have in each DIMM, * and how to use them. This information is essential for the controller to * understand the DIMM addressing, and write and read data in the correct place. */ static void vx900_dram_map_row_col_bank(dimm_info * dimms) { u8 reg8, rcb_val, col_bits, max_row_bits; size_t i; /* Do we have 4Gbit chips? */ /* FIXME: Implement this */ /* Do we have 8Gbit chips? */ /* FIXME: Implement this */ max_row_bits = rcb_val = reg8 = 0; for (i = 0; i < VX900_MAX_DIMM_SLOTS; i++) { if (dimms->dimm[i].dram_type == SPD_MEMORY_TYPE_UNDEFINED) continue; col_bits = dimms->dimm[i].col_bits; /* * DDR3 always uses 3 bank address bits, and MA type 111b cannot * be used due to chipset limitation. We are left with only two * options, which we can choose based solely on the number of * column address bits. */ if ((col_bits < 10) || (col_bits > 11)) { printram("DIMM %zd has %d column address bits.\n", i, col_bits); die("Unsupported DIMM. Try booting without this DIMM"); } rcb_val = col_bits - 5; reg8 |= (rcb_val << ((i * 3) + 2)); /* */ max_row_bits = MAX(max_row_bits, dimms->dimm[i].row_bits); } printram("RCBA map (rx50) <- %.2x\n", reg8); pci_write_config8(MCU, 0x50, reg8); printram("Houston, we have %d row address bits\n", max_row_bits); /* FIXME: Do this properly */ vx900_dram_map_pins(13, 14, 15, 17, 16); } /* * Here, we set some final configuration bits, which should improve the * performance of the memory slightly (arbitration, expiration counters, etc.) * * FIXME: We don't really do much else than the minimum to get the MCU properly * configured. We don't yet do set the "performance-enhancing" bits referenced * in the comment above. */ static void vx900_dram_write_final_config(ramctr_timing * ctrl) { /* FIXME: These are quick cheats */ /* FIXME: Why are we doing this? */ /* Tri-state MCSi# when rank is in self-refresh */ pci_mod_config8(MCU, 0x99, 0, 0x0f); /* Enable paging mode and 8 page registers */ pci_mod_config8(MCU, 0x69, 0, 0xe5); /* Enable automatic triggering of short ZQ calibration */ pci_write_config8(MCU, 0xc8, 0x80); /* And last but not least, Enable A20 line */ outb(inb(0x92) | (1 << 1), 0x92); } void vx900_init_dram_ddr3(const dimm_layout * dimm_addr) { dimm_info dimm_prop; ramctr_timing ctrl_prop; rank_layout ranks; pci_devfn_t mcu; if (!ram_check_noprint_nodie(1 << 20, 1 << 20)) { printram("RAM is already initialized. Skipping init\n"); return; } /* Locate the Memory controller */ mcu = pci_locate_device(PCI_ID(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VX900_MEMCTRL), 0); if (mcu == PCI_DEV_INVALID) { die("Memory Controller not found\n"); } memset(&dimm_prop, 0, sizeof(dimm_prop)); memset(&ctrl_prop, 0, sizeof(ctrl_prop)); memset(&ranks, 0, sizeof(ranks)); /* 1) Write some initial "safe" parameters */ vx900_dram_write_init_config(); /* 2) Get timing information from SPDs */ dram_find_spds_ddr3(dimm_addr, &dimm_prop); /* 3) Find lowest common denominator for all modules */ dram_find_common_params(&dimm_prop, &ctrl_prop); /* 4) Find the size of each memory rank */ vx900_dram_phys_bank_range(&dimm_prop, &ranks); /* 5) Set DRAM driving strength */ vx900_dram_driving_ctrl(&dimm_prop); /* 6) Set DRAM frequency and latencies */ vx900_dram_timing(&ctrl_prop); vx900_dram_freq(&ctrl_prop); /* 7) Initialize the modules themselves */ vx900_dram_ddr3_dimm_init(&ctrl_prop, &ranks); /* 8) Set refresh counter based on DRAM frequency */ vx900_dram_set_refresh_counter(&ctrl_prop); /* 9) Calibrate receive and transmit delays */ vx900_dram_calibrate_delays(&ctrl_prop, &ranks); /* 10) Enable Physical to Virtual Rank mapping */ vx900_dram_range(&ctrl_prop, &ranks); /* 11) Map address bits to DRAM pins */ vx900_dram_map_row_col_bank(&dimm_prop); /* 99) Some final adjustments */ vx900_dram_write_final_config(&ctrl_prop); /* Take a dump */ dump_pci_device(mcu); }